首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
捷联惯导初始对准大失准角系统误差模型中,当噪声具有不确定统计特性时,基于白噪声假设的无迹卡尔曼滤波算法鲁棒性较差.针对该问题,提出了一种基于H∞理论的鲁棒超球体无迹卡尔曼滤波算法.给出了计算量小的超球体采样策略,推导了H∞滤波的鲁棒机理,分离了鲁棒环节.将鲁棒环节引入超球体无迹卡尔曼滤波算法,得到鲁棒超球体无迹卡尔曼滤波算法,并分别在系统噪声和量测噪声为白噪声和有色噪声的条件下,对超球体无迹卡尔曼滤波和鲁棒超球体无迹卡尔曼滤波两种滤波方法进行了仿真实验.仿真结果表明,鲁棒超球体无迹卡尔曼滤波在白噪声情况下虽然精度有所降低,但是相对超球体无迹卡尔曼滤波具有了对有色噪声的鲁棒性,较超球体无迹卡尔曼滤波方法更适用于天向失准角为大角度并且噪声特性为有色噪声的情况.  相似文献   

2.
针对扩展卡尔曼滤波方法在飞机姿态滤波中存在的线性化误差大、需要解繁琐的Jacobian矩阵等问题,将一种新型卡尔曼滤波方法——单向无迹卡尔曼滤波应用于载有低精度、高噪声传感器的低成本飞机姿态滤波系统,并在精度及计算量上与EKF和容积卡尔曼滤波进行了比较。利用实测飞行数据进行实验,结果表明:相对于EKF,SUKF实现容易,且使姿态滤波精度提高到二阶;相对于CKF,SUKF计算简单,比CKF减少约33%的计算量。  相似文献   

3.
张晖  郅伦海 《实验力学》2023,(5):606-616
基于无迹卡尔曼滤波提出了一种高层建筑风荷载的反演算法,该方法利用有限测量楼层的风致响应数据,实时识别结构的未知风荷载和风致响应。通过典型高层建筑的风洞试验进行风荷载反演实例分析,验证了该方法的准确性和适用性,评估了模态参数误差、测量噪声水平对风荷载反演的影响。研究结果表明,文中提出的算法对模态参数误差不敏感,在一定噪声水平下反演的结果基本能够满足实际工程需要,该算法为实时评估高层建筑的风荷载和风致响应提供了有效的工具。  相似文献   

4.
为了避免被动跟踪中非线性带来的计算复杂化及跟踪精度的下降,提出将平方根无迹卡尔曼滤波平滑算法(SR-UKFS)应用到水下纯方位目标跟踪。SR-UKFS利用Rauch-Tung-Striebel(RTS)平滑算法将平方根无迹卡尔曼滤波(SR-UKF)作为前向滤波算法得到的目标状态估计向后平滑,得到前一时刻目标状态估计,再利用该状态估计值进行再次滤波得到当前时刻目标状态估计。该算法得到的前一时刻的目标状态估计更加精确,从而进一步提高了目标跟踪的精度。最后,通过对SR-UKFS算法和SR-UKF算法的跟踪性能进行了对比分析和验证,仿真结果表明在相同条件下,SR-UKFS算法能减少59%的位置误差和54%的速度误差,SR-UKFS算法应用于水下纯方位目标跟踪系统是有效的,为水下纯方位目标跟踪系统的工程实现提供了非常有价值的参考。  相似文献   

5.
针对室内复杂环境,WLAN信号强度信息高维时变特性,提出一种引入监督能力的自适应局部线性判别嵌入算法(SALDE)和改进支持向量机(SVM)的室内无线定位算法。首先,该算法利用SALDE对所采集的WLAN信号进行特征提取,达到降低维度和增大类别间判别信息的双重作用。然后,在低维流形空间中,利用SVM对数据进行特征分类判别,缩小定位区域,同时建立位置坐标与信息强度的非线性映射模型;最终利用无迹卡尔曼滤波算法(UKF)对估算位置进行滤波处理,提高定位精度与稳定性。仿真结果表明,该算法在定位误差2 m范围内精度达到72.4%,在4 m范围内精度已经高达95.8%,相比于传统SVM算法2 m内精度提高18.2%,在4 m内的精度提高17.7%,定位精度得到明显提升,可以较好地满足室内定位的需求。  相似文献   

6.
针对消防员在室内环境中进行灭火和救援时难以获知自身位置坐标的问题,采用MEMS-MARG传感器设计了一种室内定位算法。首先,根据加速度幅值波形使用峰值探测法和零点交叉法相结合的方式进行步数检测。然后,通过对消防员的行走路线进行分类,设计了一种基于直线判断辅助的航向反馈修正算法来提高定位精度,并将扩展卡尔曼滤波器融入到行人航迹推算算法中,用于估计消防员的位置坐标。最后,分别按照矩形、三角形、半圆形轨迹,进行了3组实验。实验结果表明,与未使用航向修正算法相比,位置误差减小了45%以上,航向角和位置的均方根误差分别减小了65%和76%以上。所提出的消防员室内定位算法具有良好的定位性能。  相似文献   

7.
针对微机电惯组(MEMS-IMU)受到状态突变干扰、存在未知量测噪声等情况下,传统滤波算法无法准确估计系统姿态问题,提出了一种基于模糊鲁棒自适应容积卡尔曼滤波(FRA-CKF)的姿态估计算法。通过分析滤波新息序列的统计特性,根据χ2检验原理设置了修正门限和修正边界,构造了容积卡尔曼滤波、鲁棒修正和自适应修正的隶属度函数,制定相应的模糊修正准则,使算法兼顾自适应性和鲁棒性。仿真及静、动态实验验证了所提出算法的有效性。静态实验结果表明,所提出的滤波算法相比CKF算法,航向角估计的均方根误差降低了80%,提高了滤波的精度和稳定性。  相似文献   

8.
对当前室内行人定位算法进行了研究。针对WiFi定位稳定性差的问题,提出了一种改进的K最近邻(Improved K-Nearest Neighbor,IKNN)算法。针对行人航位推算(Pedestrian Dead Reckoning,PDR)算法中步长模型及航向估计不准确的问题,提出了一种实时更新的步长模型及基于室内环境特征的航向估计算法。在改进的WiFi定位算法与PDR算法的基础上,提出了一种基于自适应粒子滤波的室内行人WiFi与PDR组合定位算法,通过自适应因子自动调节观测量对粒子分布的影响。通过智能手机在实际室内环境中对定位方法进行了测试,实验结果表明:组合定位系统定位精度为0.66 m,高于普通的粒子滤波算法,是一种准确高效的室内行人定位算法。  相似文献   

9.
针对舰载传递对准中主/子惯导之间挠曲变形及其产生的动态杆臂问题,首先分析了主/子惯导的IMU输出关系;然后建立了子惯导的系统误差模型;最后将挠曲变形和动态杆臂视作一种能量有限的未知量测噪声,设计了H∞滤波算法。仿真实验对比了已知挠曲变形和动态杆臂时的Kalman滤波方案1和未知挠曲变形和动态杆臂时的Kalman滤波方案2、H∞滤波方案3的对准效果,结果表明:使用H∞滤波方案3的航向对准速度较慢,但最终对准精度优于使用Kalman滤波方案2,与使用Kalman滤波方案1的对准精度相当,水平精度达到0.15'以内,航向精度达到0.5'以内,运算时间减少约20%。因此所设计的H∞滤波算法对挠曲变形和动态杆臂有良好的抑制能力,满足实际舰载传递对准的要求。  相似文献   

10.
针对传统的地图匹配算法在分岔口和半封闭场景下易出现匹配失效和精度下降的问题,提出了一种人员惯性定位的鲁棒多约束地图匹配算法。该算法构建了地磁/惯性融合航向估计系统,利用三轴陀螺仪实时校准地磁传感器偏差,采用校准后的地磁数据进行航向解算,可有效提升航向信息获取精度;在固定的时间窗口内引入粒子群轨迹的多重约束,增强了算法的鲁棒性;此外,设计了一种启发式多约束重采样策略,提升了粒子群的自适应能力。最后,通过多组室内和室外长距离行走实验对所提算法性能进行评估。实验结果表明,与地图回溯约束的粒子滤波算法相比,本文算法具有更强的鲁棒性,定位精度可提升2倍以上,定位误差小于总行程的0.5%。  相似文献   

11.
为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波Cubature卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。  相似文献   

12.
传统优化设计认为问题的参数(如材料属性和外加载荷等)是确定的,并且设计变量通常是连续的.而在实际应用中产品制造和测量等存在不可避免的误差,并且工程需要的设计结果(如钢筋截面尺寸等)往往是离散的.即使对于考虑了不确定性参数影响的连续最优解,经过圆整处理后也很可能产生较大偏差甚至变得不可行.针对该难点,本文结合非概率不确定...  相似文献   

13.
在室内环境中,机器人使用视觉设备实现室内定位时,需要面临高强度的运算、建立并维护比较大的地图、环境光照影响等挑战。针对以上问题,提出基于端到端模型的机器人室内单目视觉定位算法。首先,使用机器人运动场景图像数据,对每张图像标注机器人此时在世界坐标系下的三维坐标。其次,将运动场景图像及标签输入神经网络,得到机器人运动场景网络模型。最后,在机器人运动过程中,将需要查询的图像输入网络模型中,预测并输出机器人当前所处空间位置,实现一个端到端的定位系统。与传统的视觉SLAM的定位模块进行实验对比,结果表明所提出算法能够将定位误差降低38%以上。此外,所提出算法的定位实现依靠构建神经网络模型,不需要建立环境地图,只需要50 MB左右的存储空间,5 ms的时间便可以实现定位。所提出算法提高了机器人室内定位的速度和精度,减少机器人端的存储要求和计算量。  相似文献   

14.
在卡尔曼滤波算法的基础上,提出一种导航误差状态估计的新方法。该方法选取SINS和GPS三个方向上的速度差和位置差作为观测量,根据惯性器件和GPS的精度确定噪声强度,同时建立反馈控制与卡尔曼滤波相结合的滤波器,最终得到误差状态的估计值。仿真结果表明,新型滤波器不仅解决了卡尔曼滤波发散的问题,而且使得误差估计精度得到了极大的提高,从而为组合导航系统的误差估计技术找到了更有工程应用价值的方法。  相似文献   

15.
基于卡尔曼滤波的信息融合算法优化研究   总被引:5,自引:0,他引:5  
通过比较采用联邦卡尔曼滤波的状态向量融合和量测信息融合,得出量测信息融合优于状态向量融合,因为只有当卡尔曼滤波一致时状态向量融合才有效.采用基于最小均方差估计的观测值加权融合法融合了多传感器数据,保持了观测向量的维数.这种方法具有高效性.为了提高该算法的速度和精度,对系统的量测空间进行了等价变换,而等价系统的状态空间却没有改变.给出了等价变换前后的系统误差方差阵和状态估计均一致性的证明.把矩阵分析中的L-D分解算法运用到该算法中以避免计算矩阵的逆,从而改善了算法的稳定性和精度.举例验证了所设计算法的这些优点,给出了采用联邦卡尔曼滤波和所优化滤波算法的状态估计和误差的仿真结果,并依次进行了分析.经过这种优化,算法的精度和速度得到很大提高,已经应用到实际工程中.  相似文献   

16.
基于高斯混合无迹粒子滤波的地形辅助导航算法   总被引:1,自引:0,他引:1  
地形辅助导航是一种利用地形高度信息定位的导航技术,由于地形高度起伏是非线性的,因此地形辅助导航本质是非线性、非高斯贝叶斯后验概率估计问题.粒子滤波因为适合非线性、非高斯估计问题,被引入地形辅助导航领域得到广泛研究和应用,但粒子滤波算法存在粒子匮乏的问题,会影响定位精度.针对此问题,将高斯混合无迹粒子滤波( GMUPF)用于地形辅助导航,该算法用高斯混合模型(GMM)近似粒子分布,用无迹卡尔曼滤波(UKF)估计重要密度函数,不需要做重采样.通过用实际地形数据做飞行仿真实验,结果显示相比粒子滤波,不仅没有粒子匮乏问题,而且所用粒子数更少时估计精度略好.  相似文献   

17.
针对存在模型不确定性和测量噪声的线性动态系统,研究了其鲁棒故障检测问题。通过H_性能指标和无故障时残差的稳态方差约束反映对干扰影响的抑制,采用肌性能指标刻画对故障的灵敏度,将故障检测滤波器的设计描述为一个多指标约束问题,并利用线性矩阵不等式方法进行了求解。最后,在一种应用捷联惯性导航设备的车载卫星天线稳定跟踪系统中进行了仿真研究,结果表明,这种方法能够有效提高系统的故障检测精度。  相似文献   

18.
基于鲁棒滤波的无人机着陆相对导航方法   总被引:1,自引:0,他引:1  
针对无人机在移动平台上进行起降时的相对导航问题,提出了一种基于鲁棒高阶容积滤波的惯导/视觉相对导航方法。建立了相对导航系统模型,基于无人机与移动平台之间的相对运动给出了系统的相对惯导方程,并针对系统中传感器的量测特性给出了导航敏感器的测量方程。针对相对导航系统非线性较强且量测噪声不符合高斯分布等问题,在高阶容积滤波的基础上,结合Huber-based量测更新方程,设计了鲁棒高阶容积滤波相对导航滤波器,该方法具有较高的估计精度,且对混合高斯噪声有鲁棒性。相对姿态采用四元数表示,为保证四元数的归一化,在设计相对导航滤波器时采用修正的罗德里格斯参数表示姿态误差。仿真结果表明,该方法可以准确地给出无人机与移动平台之间的相对位置、速度和姿态信息,且估计精度高于扩展卡尔曼滤波、Huber-Based滤波以及高阶容积卡尔曼滤波。  相似文献   

19.
针对UWB室内定位精度易受环境影响的问题,在低速、多节点的情况下,提出了一种基于移动节点辅助定位的方法。设置一个增量队列来剔除异常点,然后使用最小二乘法计算得到定位初值。将定位初值代入扩展卡尔曼器滤波算法,得到较为准确的更新后的定位结果。当移动节点处于静止或低速状态时,其解算坐标较为精确,可以将其视作坐标已知的固定节点,来提高其他移动节点的定位精度。实验结果表明,在相同的实验环境下,所提方法的定位均方根误差比最小二乘法和Chan算法分别减小了15.89%和16.45%,最大绝对误差分别减小了60.99%和62.77%。  相似文献   

20.
基于卡尔曼滤波算法的汽车运动参数测试方法研究   总被引:5,自引:0,他引:5  
提出了一种采用多维组合惯性测量元件进行汽车运动参数测试的方法,并利用卡尔曼滤波算法提高了测试系统的精度。仿真结果表明:卡尔曼滤波算法对汽车姿态、速度等的解算具有较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号