首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of ionic multicomponent complexes comprising C60 and C70 anions and coordinating assemblies of methyldiazabicyclooctane cations with metal tetraphenylporphyrins, (MDABCO+)2.MIITPP.(C60(70)-)2.Sol. (C60, M = Zn (1); C60, M = Co (2); C60, M = Mn (3); C60, M = Fe (4); C70, M = Mn (5); and C70, M = Fe (6)) has been obtained. IR- and UV-vis-NIR spectra of 1-6 justified the formation of C60*- in 1-4 and single-bonded (C70-)2 dimers in 5 and 6. Co and Mn atoms are six-coordinated in the (MDABCO+)2.MIITPP units with relatively long M-N bonds of 2.475(2), 2.553(2), and 2.511(3) A for 2, 3, and 5, respectively. Isostructural complexes 2 and 3 contain C60*- zigzag chains separated by the (MDABCO+)2.MIITPP units, whereas in 5 the layers formed by the (C70-)2 dimers alternate with those composed of the (MDABCO+)2.MnIITPP units and noncoordinating MDABCO+ cations. Negative Weiss constants of -13 (1), -2 (3), and -2 (4) K indicate the antiferromagnetic interaction of spins, which decreases the magnetic moment of the complexes below 70-120 K. The EPR signals of 1 and 4 attributed to C60*- are split into two components at the same temperatures, which broaden and shift to higher and lower magnetic fields with the temperature decrease. Complexes 2 and 3 show single EPR signals with g-factors equal to 2.1082 and approximately 2.4 at 293 K, respectively. These values are mean between those characteristic of MIITPP and C60*-, and, consequently, the signals appear due to exchange coupling between these paramagnetic species. The antiferromagnetic ordering of C60*- spins below 70-100 K shifts g-factor values closer to those characteristic of individual MIITPP (g = 2.1907 (2) and approximately 4.9 (3) at 4 K). In contrast to 1-4, complex 5 shows paramagnetic behavior with Weiss constant close to 0.  相似文献   

2.
The distribution of C60 and C70 fullerenes in the extraction system (C60 + C70)-α-pinene-ethanol-H2O was studied at constant C60 to C70 ratio and variable total fullerene concentration at 25°C. The relationship between the C60 and C70 content in ethanol (I) and α-pinene (II) phases is nonlinear over the entire fullerene concentration range.  相似文献   

3.
By the example of the interaction of fullerene C60 and poly(N-vinylpyrrolidone), the effect of formation conditions of water-soluble fullerene-containing donor-acceptor polymer systems on their composition and structure has been studied. On the basis of these results, a new technique has been developed for preparing water-soluble polymer systems of this kind with the use of o-dichlorobenzene as a component of the reaction medium. This technique has been employed to prepare water-soluble fullerene-containing complexes of poly(N-vinylamides) of various structures (polymers and copolymers of N-vinylpyrrolidone and N-vinylcaprolactam) containing up to 3–5 wt % of C60 and C70 fullerenes. These values are 3–6 times higher than those described previously.  相似文献   

4.
A new ionic complex of C60 with decamethylchromocene, Cp*2Cr.C60(C6H4Cl2)2 (1), has been obtained. The fullerides are monomeric in 1 at room temperature, whereas they form a single-bonded (C60-)2 dimer at low temperatures, the structure of which has been studied by the X-ray diffraction on a single crystal at 100 K. The length of the intercage C-C bond is 1.597(7) A and the interfullerene distance is equal to 9.28 A. A phase transition attributed to the reversible C60*- dimerization is observed in the 220-200 K range. The transition is accompanied by changes in the unit cell parameters, the decrease of the magnetic moment from 4.20 muB (S = 3/2, 1/2) to 3.88 muB (S = 3/2) and the appearance of EPR signal from Cp*2Cr+, simultaneously.  相似文献   

5.
The electrochemical behavior of rhodium and iridium complexes with fullerences C60 and C70 was studied by cyclic voltammetry in a THF—toluene mixture. The complexes were found to be capable of oxidation and reduction. It was demonstrated that thein situ generation of metallofullerene complexes in the electrochemical cell by the interaction of C60 and C70 with hydridocarbonylphosphine complexes of rhodium and iridium, HM(CO)(PPh3)3, is possible. The influence of structural factors and the action of CO2 on changes in the redox properties of fullerene complexes was considered.  相似文献   

6.
Singly bonded PhCH(2)C(60)-C(60)CH(2)Ph dimers are generated via controlled-potential bulk electroreduction and electrooxidation of 1,2-(PhCH(2))HC(60). The reaction mixture was purified by HPLC, and the isolated fraction was characterized with single-crystal X-ray diffractions, (1)H and (13)NMR, MS, elemental analysis, and cyclic voltammetry. It was shown that the fraction consists of two HPLC-inseparable PhCH(2)C(60)-C(60)CH(2)Ph regioisomers, which are assigned as the meso and racemic regioisomers. The bulk electrolysis processes for the formation of the dimers were followed by in situ cyclic voltammetry and were further corroborated with an in situ voltammetric titration of 1,2-(PhCH(2))HC(60) with tetra-n-butylammonium hydroxide (TBAOH), on the basis of which a reaction mechanism is proposed.  相似文献   

7.
C60(2-) and C70(2-) dianions have been produced by electrospray of the monoanions and subsequent electron pickup in a Na vapor cell. The dianions were stored in an electrostatic ring and their decay by electron emission was measured up to 1 s after injection. While C70(2-) ions are stable on this time scale, except for a small fraction of the ions which have been excited by gas collisions, most of the C60(2-) ions decay on a millisecond time scale, with a lifetime depending strongly on their internal temperature. The results can be modeled as decay by electron tunneling through a Coulomb barrier, mainly from thermally populated triplet states about 120 meV above a singlet ground state. At times longer than about 100 ms, the absorption of blackbody radiation plays an important role for the decay of initially cold ions. The tunneling rates obtained from the modeling, combined with WKB estimates of the barrier penetration, give a ground-state energy 200+/-30 meV above the energy of the monoanion plus a free electron and a ground-state lifetime of the order of 20 s.  相似文献   

8.
A 3He NMR resonance of C606- containing He is assigned to He2@C606-, thus showing that C60 can also accommodate two helium atoms. The ratio of the di-helium compound relative to the mono- is 1:200, 10 times lower than the equivalent counterpart of C70. The 3He NMR chemical shift of He2@C606- is 0.093 ppm downfield from the already known resonance of He@C606-. In the reduced endohedral mono- and di-helium C70, the 3He NMR chemical shift of He2@C706- is 0.154 ppm upfield from the peak of He@C706-.  相似文献   

9.
The reactions of carbanions of bis(dialkoxyphosphoryl)bromomethanes with fullerenes C60 and C70 afforded new bis(dialkoxyphosphoryl)methanofullerenes C60 and C70, respectively, whose structures were established by spectroscopic methods.  相似文献   

10.
Electrochemical synthesis and voltammetric study of new heterotrimetallic exohedral derivatives of [60]- and [70]fullerenes containing palladium and manganese atoms were carried out. The MO involved in redox transitions were determined by the semiempirical quantum-chemical calculations and by the comparison of the potentials for the redox transitions of the heterotrimetallic complexes and their fullerene and metal-containing fragments.  相似文献   

11.
Diao G  Li L  Zhang Z 《Talanta》1996,43(10):1633-1637
The hexaanion of fullerene, C(60)(6-), was obtained in 1:5 (v/v) acetonitrile-toluene mixture with a mercury hemispherical ultramicroelectrode as a working electrode at a temperature of up to 30 degrees C. The C(70)(6-) ion also can be observed under the same conditions. The differences between the redox potentials of C(60) relative to C(70) indicate that it is easier to add electrons to C(70) and its anions compared to the counterparts of C(60). The results show that the mercury electrode is very suitable for investigation of the properties of the electrochemical reduction for the fullerenes, particularly C(60), at room temperature.  相似文献   

12.
Fullerene hydrides were prepared by hydrogenation of fullerences C60 and C70 using proton transfer from 9,10-dihydroanthracene to fullerene and were studied by mass spectrometry (electron impact, field desorption), IR, UV, and1H and13C NMR spectroscopy. The main product of the hydrogenation of C60 is C60H36, which is sufficiently stable. Hydrogenation of fullerene C70 gives a series of polyhydrides C70H n (n=36–46), and the main product is C70H36. The dehydrogenation of C60H36 by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is not quantitative and results in the formation of fullerene derivatives along with C60. The comparison of the IR and1H and13C NMR spectral data for solid C60H36 with the theoretical calculations suggests that the fullerene hydride has aT-symmetric structure and contains four isolated benzenoid rings located at tetrahedral positions on the surface of the closed skeleton of the molecule. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 4, pp. 671–678, April, 1997.  相似文献   

13.
C(60)Br(24) and C(70)Br(10) react with TiCl(4), splitting out bromine, and, after Br/Cl exchange, forming singly-bonded dimeric structures (C(60)Cl(5))(2) and [(C(70))(2)](Ti(3)Cl(13))(2), respectively, the latter consisting of dimeric [(C(70))(2)](2+) dications and (Ti(3)Cl(13))(-) anions.  相似文献   

14.
New molecular complexes of C60 with metal(II) dibenzyldithiocarbamates, M(dbdtc)2.C60.0.5(C6H5Cl), where M=Cu(II), Ni(II), Pd(II), and Pt(II) and an ionic multicomponent complex [Cr(I)(C6H6)2*+].(C60*-).0.5[Pd(dbdtc)2] (Cr(C6H6)2: bis(benzene)chromium) were obtained. According to IR, UV-visible-NIR, and EPR spectra, involve neutral components, whereas 5 comprises neutral Pd(dbdtc)2 and C60*- and Cr(I)(C6H6)2*+ radical ions. The crystal structure of at 90 K reveals strongly puckered fullerene layers alternating with those composed of Pd(dbdtc)2. The Cr(I)(C6H6)2*+ radical cations are arranged between the layers. Fullerene radical anions form pairs within the layer with an interfullerene C...C contact of 3.092(2) A, indicating their monomeric state at 90 K. This contact is essentially shorter than the sum of van der Waals radii of two carbon atoms, and consequently, C60*- can dimerize. According to SQUID and EPR, single-bonded diamagnetic (C60-)2 dimers form in below 150-130 K on slow cooling and dissociate above 150-170 K on heating. The hysteresis was estimated to be 20 K. For the (C60-)2 dimers in, the dissociation temperature is the lowest among those for ionic complexes of C60 (160-250 K). Fast cooling of the crystals within 10 min from room temperature down to 100 K shifts dimerization temperatures to lower than 60 K. This shift is responsible for the retention of a monomeric phase of at 90 K in the X-ray diffraction experiment.  相似文献   

15.
The PM3, AM1, and MINDO3 semiemperical methods are used to calculate the the energy difference between C60ON and C60ON- and the bond dissociation energy necessary to cleave neutral and negatively charged (C60)2 dimers and epoxide dimers, (C60)2ON, to their respective monomers C60, and C60ON/2. The results show that the anions of the dimers are significantly more stable than neutral dimers. This result may explain the higher thermal stability of the observed ferromagnetic phase in photolyzed C60. which has been attributed to epoxide dimers and oligomers. It also provides an explanation for the origin of unpaired electron spin necessary for ferromagnetism.  相似文献   

16.
17.
An integrated technology for manufacture of fullerenes was developed. It includes the following stages: synthesis of a fullerene black, extraction of a mixture of fullerenes from the black, preliminary separation of the mixture into concentrates enriched in C60 and C70 fullerenes, and production of C60 and C70 fullerenes of purity exceeding 99.5 and 98.0 wt %, respectively, from the concentrates.  相似文献   

18.
Good agreement of ESCF results for the ionization potentials with the corresponding one-electron levels in C60, C70, and C80 fullerenes, as well as with generalizations of the Koopmans theorem to cases considering various one-electron transitions in ions, was observed. Both are in good agreement with the available experimental data. An explanation is given both for the agreement and for the existing deviations, according to which the dispersions of the results for the ionization potentials obtained in a number of studies of the Koopmans theorem should be ascribed to differences in the parametrization and methods of construction of the semiempirical Fockian for acceptable methods of calculation.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 29, No. 6, pp. 501–513, November–December, 1993.  相似文献   

19.
The transformation of the mass spectra of the laser-desorbed C60 and C70 samples with a successive increase in the laser power, resulting in an increase in the degree of excitation of C60 (C70) and in the number of the particles in the laser plume, was studied. Unusual metastable clusters (C60 + C2) and (C70 + C2) are formed even at a minimum laser power and begin to dissociate after 0.5 s following a short (3 ns) laser pulse. An increase in the laser power results in the appearance of peaks of metastable clusters C62 (C72) with the statistically normal lifetime without a delay of dissociation. A further increase in the laser power produces metastable clusters C60k–2n and C70k–2n (k = 2, 3) formed without a lag from the dimers and trimers of C60 (C70) by the ejection of a number of C2 required for the stabilization of the C2 molecules. The peak of C70 appears simultaneously with the appearance of the (C60)2–2n peaks upon the laser desorption of pure C60. These findings provide evidence for the growth of the excited fullerene clusters by coalescence and subsequent stabilization due to the ejection of a small fragment rather than by the implantation of C2 into the fullerene framework. This mechanism of cluster growth should be taken into consideration in modeling fullerene formation in an electric arc reactor, because the clusters formed under these conditions have a substantial excess internal energy.  相似文献   

20.
Efficiencies and rates of electron transfer from various electron donors to excited fullerenes (C60 and C70) have been determined by observing the transient absorption bands in the near-IR region, where the anion radicals of fullerenes appear. From the rise of the absorption bands of C60 −+ and C70 −+ in the near-IR region, electron transfer takes place via the triplet states (TC60 * and TC70 *) under appropriately low concentrations of electron donors. By analysis of the rise curves C60 −+ and C70 −+, contribution of the excited singlet states (SC60 * and SC70 *) in addition to the route of the triplet states (TC60 * and TC70 *) is confirmed. The quantum yield for electron transfer via the triplet states Φct T was evaluated by the ratio of [C60 −+]/[TC60 *] (or [C70 −+/[TC70 *]). The Φct T depends upon the donor-ability, donor concentration, and solvent polarity. The back electron-transfer process, which was evaluated by observing C60 −+, also depends upon the solvent polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号