首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In functional magnetic resonance imaging (fMRI) analysis, although the univariate general linear model (GLM) is currently the dominant approach to brain activation detection, there is growing interest in multivariate approaches such as principal component analysis, canonical variate analysis (CVA), independent component analysis and cluster analysis, which have the potential to reveal neural networks and functional connectivity in the brain. To understand the effect of processing options on performance of multivariate model-based fMRI processing pipelines with real fMRI data, we investigated the impact of commonly used fMRI preprocessing steps and optimized the associated multivariate CVA-based, single-subject processing pipelines with the NPAIRS (nonparametric prediction, activation, influence and reproducibility resampling) performance metrics [prediction accuracy and statistical parametric image (SPI) reproducibility] on the Fiswidgets platform. We also compared the single-subject SPIs of univariate GLM with multivariate CVA-based processing pipelines from SPM, FSL.FEAT, NPAIRS.GLM and NPAIRS.CVA software packages (or modules) using a novel second-level CVA. We found that for the block-design data, (a) slice timing correction and global intensity normalization have little consistent impact on the fMRI processing pipeline, but spatial smoothing, temporal detrending or high-pass filtering, and motion correction significantly improved pipeline performance across all subjects; (b) the combined optimization of spatial smoothing, temporal detrending and CVA model parameters on average improved between-subject reproducibility; and (c) the most important pipeline choices include univariate or multivariate statistical models and spatial smoothing. This study suggests that considering options other than simply using GLM with a fixed spatial filter may be of critical importance in determining activation patterns in BOLD fMRI studies.  相似文献   

2.
Functional magnetic resonance imaging (fMRI) is an effective tool for the measurement of brain neuronal activities. To date, several statistical methods have been proposed for analyzing fMRI datasets to select true active voxels among all the voxels appear to be positively activated. Finding a reliable and valid activation map is very important and becomes more crucial in clinical and neurosurgical investigations of single fMRI data, especially when pre-surgical planning requires accurate lateralization index as well as a precise localization of activation map.Defining a proper threshold to determine true activated regions, using common statistical processes, is a challenging task. This is due to a number of variation sources such as noise, artifacts, and physiological fluctuations in time series of fMRI data which affect spatial distribution of noise in an expected uniform activated region. Spatial smoothing methods are frequently used as a preprocessing step to reduce the effect of noise and artifacts. The smoothing may lead to a shift and enlargement of activation regions, and in some extend, unification of distinct regions.In this article, we propose a bootstrap resampling technique for analyzing single fMRI dataset with the aim of finding more accurate and reliable activated regions. This method can remove false positive voxels and present high localization accuracy in activation map without any spatial smoothing and statistical threshold setting.  相似文献   

3.
As the amygdala is involved in various aspects of emotional processing, its characterization using neuroimaging modalities, such as functional magnetic resonance imaging (fMRI), is of great interest. However, in fMRI, the amygdala region suffers from susceptibility artifacts that are composed of signal dropouts and image distortions. Various technically demanding approaches to reduce these artifacts have been proposed, and most require alterations beyond a mere change of the acquisition parameters and cannot be easily implemented by the user without changing the MR sequence code. In the present study, we therefore evaluated the impact of simple alterations of the acquisition parameters of a standard gradient-echo echo-planar imaging technique at 3 T composed of echo times (TEs) of 27 and 36 ms as well as section thicknesses of 2 and 4 mm while retaining a section orientation parallel to the intercommissural plane and an in-plane resolution of 2x2 mm(2). In contrast to previous studies, we based our evaluation on the resulting activation maps using an emotional stimulation paradigm rather than on MR raw image quality only. Furthermore, we tested the effects of spatial smoothing of the functional raw data in the course of postprocessing using spatial filters of 4 and 8 mm. Regarding MR raw image quality, a TE of 27 ms and 2-mm sections resulted in the least susceptibility artifacts in the anteromedial aspect of the temporal lobe. The emotional stimulation paradigm resulted in robust bilateral amygdala activation for the approaches with 2-mm sections only -- but with larger activation volumes for a TE of 36 ms as compared with that of 27 ms. Moderate smoothing with a 4-mm spatial filter represented a good compromise between increased sensitivity and preserved specificity. In summary, we showed that rather than applying advanced modifications of the MR sequence, a simple increase in spatial resolution (i.e., the reduction of section thickness) is sufficient to improve the detectability of amygdala activation.  相似文献   

4.
Blood oxygenation level dependent (BOLD) contrast has been widely used for visualizing regional neural activation. Temporal filtering and parameter estimation algorithms are generally used to account for the intrinsic temporal autocorrelation present in BOLD data. Arterial spin labeling perfusion imaging is an emerging methodology for visualizing regional brain function both at rest and during activation. Perfusion contrast manifests different noise properties compared with BOLD contrast, represented by the even distribution of noise power and spatial coherence across the frequency spectrum. Consequently, different strategies are expected to be employed in the statistical analysis of functional magnetic resonance imaging (fMRI) data based on perfusion contrast. In this study, the effect of different analysis methods upon signal detection efficacy, as assessed by receiver operator characteristic (ROC) measures, was examined for perfusion fMRI data. Simulated foci of neural activity of varying amplitude and spatial extent were added to resting perfusion data, and the accuracy of each analysis was evaluated by comparing the results with the known distribution of pseudo-activation. In contrast to the BOLD fMRI, temporal smoothing or filtering reduces the power of perfusion fMRI data analyses whereas spatial smoothing is beneficial to the efficacy of analyses.  相似文献   

5.
Real-time functional magnetic resonance imaging: methods and applications   总被引:3,自引:0,他引:3  
Functional magnetic resonance imaging (fMRI) has been limited by time-consuming data analysis and a low signal-to-noise ratio, impeding online analysis. Recent advances in acquisition techniques, computational power and algorithms increased the sensitivity and speed of fMRI significantly, making real-time analysis and display of fMRI data feasible. So far, most reports have focused on the technical aspects of real-time fMRI (rtfMRI). Here, we provide an overview of the different major areas of applications that became possible with rtfMRI: online analysis of single-subject data provides immediate quality assurance and functional localizers guiding the main fMRI experiment or surgical interventions. In teaching, rtfMRI naturally combines all essential parts of a neuroimaging experiment, such as experimental design, data acquisition and analysis, while adding a high level of interactivity. Thus, the learning of essential knowledge required to conduct functional imaging experiments is facilitated. rtfMRI allows for brain-computer interfaces (BCI) with a high spatial and temporal resolution and whole-brain coverage. Recent studies have shown that such BCI can be used to provide online feedback of the blood-oxygen-level-dependent signal and to learn the self-regulation of local brain activity. Preliminary evidence suggests that this local self-regulation can be used as a new paradigm in cognitive neuroscience to study brain plasticity and the functional relevance of brain areas, even being potentially applicable for psychophysiological treatment.  相似文献   

6.
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration and, in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing and reduced the noise and false activations in regions where no legitimate effects would occur.  相似文献   

7.
Spatial smoothing is typically used to denoise magnetic resonance imaging (MRI) data. Gaussian smoothing kernels, associated with heat equations or isotropic diffusion (ISD), are widely adopted for this purpose because of their easy implementation and efficient computation, but despite these advantages, Gaussian smoothing kernels blur the edges, curvature and texture of images. To overcome these issues, researchers have proposed anisotropic diffusion (ASD) and non-local means [i.e., diffusion (NLD)] kernels. However, these new filtering paradigms are rarely applied to MRI analyses. In the current study, using real degraded MRI data, we demonstrated the effect of denoising using ISD, ASD and NLD kernels. Furthermore, we evaluated their impact on three common preprocessing steps of MRI data analysis: brain extraction, segmentation and registration. Results suggest that NLD-based spatial smoothing is most effective at improving the quality of MRI data preprocessing and thus should become the new standard method of smoothing in MRI data processing.  相似文献   

8.
Spatial independent component analysis (ICA) is a well-established technique for multivariate analysis of functional magnetic resonance imaging (fMRI) data. It blindly extracts spatiotemporal patterns of neural activity from functional measurements by seeking for sources that are maximally independent. Additional information on one or more sources (e.g., spatial regularity) is often available; however, it is not considered while looking for independent components. In the present work, we propose a new ICA algorithm based on the optimization of an objective function that accounts for both independence and other information on the sources or on the mixing model in a very general fashion. In particular, we apply this approach to fMRI data analysis and illustrate, by means of simulations, how inclusion of a spatial regularity term helps to recover the sources more effectively than with conventional ICA. The improvement is especially evident in high noise situations. Furthermore we employ the same approach on data sets from a complex mental imagery experiment, showing that consistency and physiological plausibility of relatively weak components are improved.  相似文献   

9.
By measuring the changes of magnetic resonance signals during a stimulation, the functional magnetic resonance imaging (fMRI) is able to localize the neural activation in the brain. In this report, we discuss the fMRI application of the spatial independent component analysis (spatial ICA), which maximizes statistical independence over spatial images. Included simulations show the possibility of the spatial ICA on discriminating asynchronous activations or different response patterns in an fMRI data set. An in vivo visual stimulation fMRI test was conducted, and the result shows a proper sum of the separated components as the final image is better than a single component, using fMRI data analysis by spatial ICA. Our result means that spatial ICA is a useful tool for the detection of different response activations and suggests that a proper sum of the separated independent components should be used for the imaging result of fMRI data processing.  相似文献   

10.
In functional magnetic resonance imaging (fMRI) data analysis, effective connectivity investigates the influence that brain regions exert on one another. Structural equation modeling (SEM) has been the main approach to examine effective connectivity. In this paper, we propose a method that, given a set of regions, performs partial correlation analysis. This method provides an approach to effective connectivity that is data driven, in the sense that it does not require any prior information regarding the anatomical or functional connections. To demonstrate the practical relevance of partial correlation analysis for effective connectivity investigation, we reanalyzed data previously published [Bullmore, Horwitz, Honey, Brammer, Williams, Sharma, 2000. How good is good enough in path analysis of fMRI data? NeuroImage 11, 289–301]. Specifically, we show that partial correlation analysis can serve several purposes. In a pre-processing step, it can hint at which effective connections are structuring the interactions and which have little influence on the pattern of connectivity. As a post-processing step, it can be used both as a simple and visual way to check the validity of SEM optimization algorithms and to show which assumptions made by the model are valid, and which ones should be further modified to better fit the data.  相似文献   

11.
Wavelet methods for image regularization offer a data-driven alternative to Gaussian smoothing in functional magnetic resonance (fMRI) analysis. Their impact has been limited by the difficulties in integrating regularization in the wavelet domain and inference in the image domain, precluding the probabilistic decision on which areas are activated by a task. Here we present an integrated framework for Bayesian estimation and regularization in wavelet space that allows the usual voxelwise hypothesis testing. This framework is flexible, being an adaptation to fMRI time series of a more general wavelet-based functional mixed-effect model. Through testing on a combination of simulated and real fMRI data, we show evidence of improved signal recovery, without compromising test accuracy in image space.  相似文献   

12.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods.

Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible.

A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure.  相似文献   


13.
在γ射线违禁品探测技术中,快速准确的γ射线康普顿散射信号平滑具有非常重要的意义。现有的多项式平滑法和小波分析方法不仅运算速度慢,且易受噪声干扰,容易出现弱峰、谱峰错位等问题。为解决上述问题,提出一种新的基于阶梯阈值的散射信号分析方法。首先通过数据预处理,计算康普顿散射信号的基底变量,然后根据自适应阶梯阈值和测量差值,依次迭代更新背散射数据,进行信号滤波,最后自动检测峰位,实现可疑物识别。实验结果表明,相比现有的信号分析方法,阶梯阈值算法能够降低噪声干扰,保留康普顿散射信号的峰值和峰位,运算速度快,满足便携式探测设备的实时性要求。Fast and accurate Compton scattering signal smoothing plays an important part for γ-ray-based contraband identification.Traditional methods based on polynomial averaging or wavelet analysis are not only slow but also sensitive to noise,which makes them suffer from issues such as peak amplitude decrease and peak dislocation.A new method based on step threshold is proposed for scattering signal analysis,which can overcome aforementioned issues.Firstly,the base value for Compton scattering signal is computed via data pre-processing.Secondly,the scattering data is iteratively updated using adaptive threshold and system measurement,thus producing smoothed signal data.At last,the peak is localized from the filtered signal data and abnormality is identified.Experimental results show that our method is robust against noise compared to existing methods.The amplitude and location of the peak can be accurately perceived and identified.The method is efficient and can be deployed on portable contraband detection devices.  相似文献   

14.
Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed to identify effective connectivity in the human brain with functional magnetic resonance imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pair-wise GCM has commonly been applied based on single-voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of fMRI data with GCM. To compare the effectiveness of our approach with traditional pair-wise GCM models, we applied a well-established conditional GCM to preselected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis of an fMRI data set in the temporal domain. Data sets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM-detected brain activation regions in the emotion-related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state data set, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network that can be characterized as both afferent and efferent influences on the medial prefrontal cortex and posterior cingulate cortex. These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive model can achieve greater accuracy in detecting network connectivity than the widely used pair-wise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI.  相似文献   

15.
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.  相似文献   

16.
This paper describes significant developments in methods for the automatic, quantitative analysis of interferograms. All areas of analysis have been considered: fringe field generation, pre-processing, and phase unwrapping.

A new quasi-heterodyne holographic technique is described in which the image is reconstructed using a single beam. The errors in the reconstructed fringe field are mainly linear in form, and an error compensation scheme is proposed. The final error in the phase measurement using automatic analysis is λ/40.

The process of image smoothing by an averaging filter is considered to reduce the effects of random noise. It is shown that by measuring the signal-to-noise ratio of the fringe field an optimum degree of smoothing may be applied. This is demonstrated on holographic and electronic speckle pattern interferometry (ESPI) data.

Two methods for cosinusoidal fringe image combination are compared, using three or four fields. It is shown that an automatic analysis can be achieved using four phase stepped images.

A new algorithm to automatically unwrap the phase of complex fringe patterns is described. The fringe field is segmented into small rectangular areas, called tiles. This allows local data to be obtained on fringe consistency and density. A confidence tree can then be formed to produce an optimal solution for the whole field. Results are presented and discussed for both holographic and ESPI data.  相似文献   


17.
The quality of fMRI data impacts functional connectivity measures and consequently, the decisions that clinicians and researchers make regarding functional connectivity interpretation. The present study used resting state fMRI to investigate resting state network connectivity in a sample of patients with Juvenile Absence Epilepsy. Single-subject manual independent component analysis was used in two levels, whereby all noise components were removed, and cerebrospinal fluid pulsation components only were isolated and removed. Improved temporal signal to noise ratios and functional connectivity metrics were observed in each of the cleaning levels for both epilepsy and control cohorts. Results showed full, single-subject manual independent component analysis reduced the number of functional connectivity correlations and increased the strength of these correlations. Similar effects were also observed for the cerebrospinal fluid pulsation only cleaned data relative to the uncleaned, and fully cleaned data. Single-subject manual independent component analysis coupled with short TR multiband acquisition can significantly improve the validity of findings derived from fMRI data sets.  相似文献   

18.
Nonnegative matrix factorization (NMF) is a blind source separation (BSS) algorithm which is based on the distinct constraint of nonnegativity of the estimated parameters as well as on the measured data. In this study, according to the potential feasibility of NMF for fMRI data, the four most popular NMF algorithms, corresponding to the following two types of (1) least-squares based update [i.e., alternating least-squares NMF (ALSNMF) and projected gradient descent NMF] and (2) multiplicative update (i.e., NMF based on Euclidean distance and NMF based on divergence cost function), were investigated by using them to estimate task-related neuronal activities. These algorithms were applied firstly to individual data from a single subject and, subsequently, to group data sets from multiple subjects. On the single-subject level, although all four algorithms detected task-related activation from simulated data, the performance of multiplicative update NMFs was significantly deteriorated when evaluated using visuomotor task fMRI data, for which they failed in estimating any task-related neuronal activities. In group-level analysis on both simulated data and real fMRI data, ALSNMF outperformed the other three algorithms. The presented findings may suggest that ALSNMF appears to be the most promising option among the tested NMF algorithms to extract task-related neuronal activities from fMRI data.  相似文献   

19.
Conditional Source-term Estimation (CSE) obtains the conditional species mass fractions by inverting a Fredholm integral equation of the first kind. In the present work, a Bayesian framework is used to compare two different regularisation methods: zeroth-order temporal Tikhonov regulatisation and first-order spatial Tikhonov regularisation. The objectives of the current study are: (i) to elucidate the ill-posedness of the inverse problem; (ii) to understand the origin of the perturbations in the data and quantify their magnitude; (iii) to quantify the uncertainty in the solution using different priors; and (iv) to determine the regularisation method best suited to this problem. A singular value decomposition shows that the current inverse problem is ill-posed. Perturbations to the data may be caused by the use of a discrete mixture fraction grid for calculating the mixture fraction PDF. The magnitude of the perturbations is estimated using a box filter and the uncertainty in the solution is determined based on the width of the credible intervals. The width of the credible intervals is significantly reduced with the inclusion of a smoothing prior and the recovered solution is in better agreement with the exact solution. The credible intervals for temporal and spatial smoothing are shown to be similar. Credible intervals for temporal smoothing depend on the solution from the previous time step and a smooth solution is not guaranteed. For spatial smoothing, the credible intervals are not dependent upon a previous solution and better predict characteristics for higher mixture fraction values. These characteristics make spatial smoothing a promising alternative method for recovering a solution from the CSE inversion process.  相似文献   

20.
Tracking of individual fish targets using a split-beam echosounder is a common method for investigating fish behavior. When mounted on a floating platform like a ship or a buoy, the transducer movement often complicates the process. This paper presents a framework for tracking single targets from such a platform. A filter based on the correlated fish movements between pings is developed to estimate the platform movement, and an extended Kalman filter is used to combine the split-beam measurements and the platform-position estimates. Different methods for gating and data association are implemented and tested with respect to data-association errors, using manually tracked data from a free-floating buoy as a reference. The data association was improved by utilizing the estimated velocity for each track to predict the location of the next observation. The data association was more robust when estimates of platform tilt/roll were used. Other techniques to estimate position and velocity, like linear regression and smoothing splines, were implemented and tested on a simulated data set. The platform-state estimation improved the estimates for methods like the Kalman filter and a smoothing spline with cross validation, but not for robust methods like linear regression and smoothing spline with a fixed degree of smoothing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号