首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

2.
The Markov-Bernstein inequalities for generalized Gegenbauer weight are studied. A special basis of the vector space Pn of real polynomials in one variable of degree at most equal to n is proposed. It is produced by quasi-orthogonal polynomials with respect to this generalized Gegenbauer measure. Thanks to this basis the problem to find the Markov-Bernstein constant is separated in two eigenvalue problems. The first has a classical form and we are able to give lower and upper bounds of the Markov-Bernstein constant by using the Newton method and the classical qd algorithm applied to a sequence of orthogonal polynomials. The second is a generalized eigenvalue problem with a five diagonal matrix and a tridiagonal matrix. A lower bound is obtained by using the Newton method applied to the six term recurrence relation produced by the expansion of the characteristic determinant. The asymptotic behavior of an upper bound is studied. Finally, the asymptotic behavior of the Markov-Bernstein constant is O(n2) in both cases.  相似文献   

3.
The time fractional Fokker‐Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine pseudospectral method based on Gegenbauer polynomials and Chebyshev spectral differentiation matrix to solve numerically a class of initial‐boundary value problems of the time fractional Fokker‐Planck equation on a finite domain. The presented method reduces the main problem to a generalized Sylvester matrix equation, which can be solved by the global generalized minimal residual method. Some numerical experiments are considered to demonstrate the accuracy and the efficiency of the proposed computational procedure.  相似文献   

4.
The Markov–Bernstein inequalities for the Jacobi measure remained to be studied in detail. Indeed the tools used for obtaining lower and upper bounds of the constant which appear in these inequalities, did not work, since it is linked with the smallest eigenvalue of a five diagonal positive definite symmetric matrix. The aim of this paper is to generalize the qd algorithm for positive definite symmetric band matrices and to give the mean to expand the determinant of a five diagonal symmetric matrix. After that these new tools are applied to the problem to produce effective lower and upper bounds of the Markov–Bernstein constant in the Jacobi case. In the last part we com pare, in the particular case of the Gegenbauer measure, the lower and upper bounds which can be deduced from this paper, with those given in Draux and Elhami (Comput J Appl Math 106:203–243, 1999) and Draux (Numer Algor 24:31–58, 2000).   相似文献   

5.
We introduce a hybrid Gegenbauer (ultraspherical) integration method (HGIM) for solving boundary value problems (BVPs), integral and integro-differential equations. The proposed approach recasts the original problems into their integral formulations, which are then discretized into linear systems of algebraic equations using Gegenbauer integration matrices (GIMs). The resulting linear systems are well-conditioned and can be easily solved using standard linear system solvers. A study on the error bounds of the proposed method is presented, and the spectral convergence is proven for two-point BVPs (TPBVPs). Comparisons with other competitive methods in the recent literature are included. The proposed method results in an efficient algorithm, and spectral accuracy is verified using eight test examples addressing the aforementioned classes of problems. The proposed method can be applied on a broad range of mathematical problems while producing highly accurate results. The developed numerical scheme provides a viable alternative to other solution methods when high-order approximations are required using only a relatively small number of solution nodes.  相似文献   

6.
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to determine optimally localized polynomials on the unit ball.  相似文献   

7.
By means of the classical Lagrange expansion theorem, five convolution formulae are established for the orthogonal polynomials named after Laguerre, Jacobi, Meixner, Gegenbauer and Pollaczek, that contain the well-known Hagen-Rothe formula for binomial coefficients as common special case.  相似文献   

8.
ABSTRACT

In recent years, special matrix functions and polynomials of a real or complex variable have been in a focus of increasing attention leading to new and interesting problems. In this work, we present matrix space analogues to generalized some functions and polynomials in the framework of matrix setting. Many of the special matrix functions and polynomials are constructed along standard procedures. Recently published papers are also surveyed and we list the most essential ones.  相似文献   

9.
The theory of Gegenbauer (ultraspherical) polynomial approximation has received considerable attention in recent decades. In particular, the Gegenbauer polynomials have been applied extensively in the resolution of the Gibbs phenomenon, construction of numerical quadratures, solution of ordinary and partial differential equations, integral and integro-differential equations, optimal control problems, etc. To achieve better solution approximations, some methods presented in the literature apply the Gegenbauer operational matrix of integration for approximating the integral operations, and recast many of the aforementioned problems into unconstrained/constrained optimization problems. The Gegenbauer parameter α associated with the Gegenbauer polynomials is then added as an extra unknown variable to be optimized in the resulting optimization problem as an attempt to optimize its value rather than choosing a random value. This issue is addressed in this article as we prove theoretically that it is invalid. In particular, we provide a solid mathematical proof demonstrating that optimizing the Gegenbauer operational matrix of integration for the solution of various mathematical problems by recasting them into equivalent optimization problems with α added as an extra optimization variable violates the discrete Gegenbauer orthonormality relation, and may in turn produce false solution approximations.  相似文献   

10.
Following the pressure of Hermite in 1865 and Heine in 1868, the name of Rodrigues was definitively associated to his famous representation given in 1815. In this paper, we precise the contribution of Rodrigues, proving that his formula not only generates the Legendre polynomials, but also special Gegenbauer polynomials and even the corresponding second kind functions, which are never mentioned. The links with Hildebrandt polynomials and with the Bell polynomials are also briefly examined.  相似文献   

11.
In this work, we propose an adaptive spectral element algorithm for solving non-linear optimal control problems. The method employs orthogonal collocation at the shifted Gegenbauer–Gauss points combined with very accurate and stable numerical quadratures to fully discretize the multiple-phase integral form of the optimal control problem. The proposed algorithm relies on exploiting the underlying smoothness properties of the solutions for computing approximate solutions efficiently. In particular, the method brackets discontinuities and ‘points of nonsmoothness’ through a novel local adaptive algorithm, which achieves a desired accuracy on the discrete dynamical system equations by adjusting both the mesh size and the degree of the approximating polynomials. A rigorous error analysis of the developed numerical quadratures is presented. Finally, the efficiency of the proposed method is demonstrated on three test examples from the open literature.  相似文献   

12.
For a positive definite infinite matrix A, we study the relationship between its associated sequence of orthonormal polynomials and the asymptotic behaviour of the smallest eigenvalue of its truncation An of size n×n. For the particular case of A being a Hankel or a Hankel block matrix, our results lead to a characterization of positive measures with finite index of determinacy and of completely indeterminate matrix moment problems, respectively.  相似文献   

13.
New special functions called -functions are introduced. Connections of -functions with the known Legendre, Chebyshev and Gegenbauer polynomials are given. For -functions the Rodrigues formula is obtained.  相似文献   

14.
王新哲 《大学数学》2007,23(5):170-172
给出了矩阵多项式逆矩阵的一些充要条件和一种求法.  相似文献   

15.
In this paper, an extension of the Hermite matrix polynomials is introduced. Some relevant matrix functions appear in terms of the two-variable Hermite matrix polynomials. Furthermore, in order to give qualitative properties of this family of matrix polynomials, the Chebyshev matrix polynomials of the second kind are introduced.  相似文献   

16.
Some methods of numerical analysis, used for obtaining estimations of zeros of polynomials, are studied again, more especially in the case where the zeros of these polynomials are all strictly positive, distinct and real. They give, in particular, formal lower and upper bounds for the smallest zero. Thanks to them, we produce new formal lower and upper bounds of the constant in Markov-Bernstein inequalities in L 2 for the norm corresponding to the Laguerre and Gegenbauer inner products. In fact, since this constant is the inverse of the square root of the smallest zero of a polynomial, we give formal lower and upper bounds of this zero. Moreover, a new sufficient condition is given in order that a polynomial has some complex zeros. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Ratio asymptotic results give the asymptotic behaviour of the ratio between two consecutive orthogonal polynomials with respect to a positive measure. In this paper, we obtain ratio asymptotic results for orthogonal matrix polynomials and introduce the matrix analogs of the scalar Chebyshev polynomials of the second kind.  相似文献   

18.
Some families of orthogonal matrix polynomials satisfying second-order differential equations with coefficients independent of n have recently been introduced (see [Internat. Math. Res. Notices 10 (2004) 461–484]). An important difference with the scalar classical families of Jacobi, Laguerre and Hermite, is that these matrix families do not satisfy scalar type Rodrigues’ formulas of the type (ΦnW)(n)W-1, where Φ is a matrix polynomial of degree not bigger than 2. An example of a modified Rodrigues’ formula, well suited to the matrix case, appears in [Internat. Math. Res. Notices 10 (2004) 482].In this note, we discuss some of the reasons why a second order differential equation with coefficients independent of n does not imply, in the matrix case, a scalar type Rodrigues’ formula and show that scalar type Rodrigues’ formulas are most likely not going to play in the matrix valued case the important role they played in the scalar valued case. We also mention the roles of a scalar-type Pearson equation as well as that of a noncommutative version of it.  相似文献   

19.
We deal with the problem of obtaining closed formulas for the connection coefficients between orthogonal polynomials and the canonical sequence. We use a recurrence relation fulfilled by these coefficients and symbolic computation with the Mathematica language. We treat the cases of Gegenbauer, Jacobi and a new semi-classical sequence.  相似文献   

20.
This paper is devoted to the study of reverse generalized Bessel matrix polynomials (RGBMPs) within complex analysis. This study is assumed to be a generalization and improvement of the scalar case into the matrix setting. We give a definition of the reverse generalized Bessel matrix polynomials Θn(A; B; z), , for parameter (square) matrices A and B, and provide a second‐order matrix differential equations satisfied by these polynomials. Subsequently, a Rodrigues‐type formula, a matrix recurrence relationship, and a pseudo‐generating function are then developed for RGBMPs. © 2013 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号