首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究带非局部积分项的二阶线性常微分方程及其在金融保险上的应用.首先讨论带非局部积分项的二阶常微分方程解的存在唯一性,通过变量代换和累次积分交换积分顺序将非局部项简化,将方程化为方程组,然后完成了对方程组解的存在唯一性的证明.接着分析了带非局部项的二阶常微分方程解的结构,给出了方程解的形式.最后通过推导,指出带非局部项的线性常微分方程在保险公司的破产概率研究中的应用,重点放在二阶方程的应用上,并且在某一特定情况下,举出了一个可以给出解析解的例子.  相似文献   

2.
There is increasing motivation for solving time-dependent differential equations with iterative splitting schemes. While Magnus expansion has been intensively studied and widely applied for solving explicitly time-dependent problems, the combination with iterative splitting schemes can open up new areas. The main problems with the Magnus expansion are the exponential character and the difficulty of deriving practical higher order algorithms. An alternative method is based on iterative splitting methods that take into account a temporally inhomogeneous equation. In this work, we show that the ideas derived from the iterative splitting methods can be used to solve time-dependent problems. Examples are discussed.  相似文献   

3.
The singularly perturbed boundary value problem of scalar integro-differential equations has been studied extensively by the differential inequality method . However, it does not seem possible to carry this method over to a corresponding nonlinear vector integro-differential equation. Therefore , for n-dimensional vector integro-differential equations the problem has not been solved fully. Here, we study this nonlinear vector problem and obtain some results. The approach in this paper is to transform the appropriate integro-differential equations into a canonical or diagonalized system of two first-order equations.  相似文献   

4.
Banach空间中二阶积分-微分方程的初值问题   总被引:5,自引:0,他引:5  
使用锥理论及单调迭代技术,首先讨论了Banach空间中一阶积分-微分方程初值问题的最小最大解的存在性,并在此基础上讨论了带有一阶微分项的二阶积分-微分方程初值问题的最小最大解的存在性。  相似文献   

5.
We propose an iterative method to solve some non-linear ordinary differential equations. Comparing on the Mathieu, van der Pol and Hill equation of fourth order, we see that this method is much more efficient than the well known methods by Lyapunov or Picard.  相似文献   

6.
该文利用单调迭代技术讨论了Banach空间中含有非线性一阶微分项x'的二阶脉冲积分-微分方程初值问题的最大最小解的存在性问题. 作为该文主要结论的应用,作者给出了一个例子.  相似文献   

7.
有效求解连续的Sylvester矩阵方程对于科学和工程计算有着重要的应用价值,因此该文提出了一种可行的分裂迭代算法.该算法的核心思想是外迭代将连续Sylvester矩阵方程的系数矩阵分裂为对称矩阵和反对称矩阵,内迭代求解复对称矩阵方程.相较于传统的分裂算法,该文所提出的分裂迭代算法有效地避免了最优迭代参数的选取,并利用了复对称方程组高效求解的特点,进而提高了算法的易实现性、易操作性.此外,从理论层面进一步证明了该分裂迭代算法的收敛性.最后,通过数值算例表明分裂迭代算法具有良好的收敛性和鲁棒性,同时也证实了分裂迭代算法的收敛性很大程度依赖于内迭代格式的选取.  相似文献   

8.
通过对一般Riccati方程进行初等变换,使之变为特殊的Riccati方程,然后利用公式、观察实验,或利用二阶微分方程的特解,或利用一阶微分方程组的特解等方法,求得这些Riccati方程的特解.  相似文献   

9.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

10.
It is known that the simplest equation method is applied for finding exact solutions of autonomous nonlinear differential equations. In this paper we extend this method for finding exact solutions of non-autonomous nonlinear differential equations (DEs). We applied the generalized approach to look for exact special solutions of three Painlevé equations. As ODE of lower order than Painlevé equations the Riccati equation is taken. The obtained exact special solutions are expressed in terms of the special functions defined by linear ODEs of the second order.  相似文献   

11.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

12.
本文在一般的序Banach空间中研究了一阶脉冲混合型积分-微分方程初值问题的唯一解。在比较广泛的上控制条件并且假定所考虑初值问题只有一个上解或下解的假设之下,我们证明了所考虑初值问题的唯一解可以由显形式表达的迭代序列的一致极限得到,并给出了逼近解的迭代序列的误差估计,本文没有使用任何紧型条件。我们的结果是最近一些结果的改进和推广。  相似文献   

13.
This paper deals with first order integro-differential equations of mixed type with deviating arguments. We investigate the existence of solutions of such problems with integral boundary conditions by establishing a comparison result and applying the monotone iterative technique. To obtain corresponding results, we also discuss first order differential inequalities with deviating arguments. Two examples demonstrate the application of our results.  相似文献   

14.
In this paper, we apply the method of iterative operator splitting on the Korteweg-de Vries (KdV) equation. The method is based on first, splitting the complex problem into simpler sub-problems. Then each sub-equation is combined with iterative schemes and solved with suitable integrators. Von Neumann analysis is performed to achieve stability criteria for the proposed method applied to the KdV equation. The numerical results obtained by iterative splitting method for various initial conditions are compared with the exact solutions. It is seen that they are in a good agreement with each other.  相似文献   

15.
In this paper, we present a new approach to resolve linear and nonlinear weakly-singular Volterra integro-differential equations of first- or second-order by first removing the singularity using Taylor’s approximation and then transforming the given first- or second-order integro-differential equations into an ordinary differential equation such as the well-known Legendre, degenerate hypergeometric, Euler or Abel equations in such a manner that Adomian’s asymptotic decomposition method can be applied, which permits convenient resolution of these equations. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained demonstrate this approach is indeed practical and efficient.  相似文献   

16.
We use the continuous sine–cosine wavelets on the interval [0, 1] to solve the linear integro-differential equation. To do so, we construct the quadrature formulae for the calculation of inner products of any functions, which are required in the approximation for the integro-differential equation. Then, we reduced the integro-differential equation to the solution of linear algebraic equations.  相似文献   

17.
Fei Liu 《数学研究》2014,47(2):190-207
A simple and efficient spectral method for solving the second, third order and fourth order elliptic equations with variable coefficients and nonlinear differential equations is presented. It is different from spectral-collocation method which leads to dense, ill-conditioned matrices. The spectral method in this paper solves for the coefficients of the solution in a Chebyshev series, leads to discrete systems with special structured matrices which can be factorized and solved efficiently. We also extend the method to boundary value problems in two space dimensions and solve 2-D separable equation with variable coefficients. As an application, we solve Cahn-Hilliard equation iteratively via first-order implicit time discretization scheme. Ample numerical results indicate that the proposed method is extremely accurate and efficient.  相似文献   

18.
The main goal of this article is to discuss the numerical solution to a nonlinear wave equation associated with the first of the celebrated Painlevé transcendent ordinary differential equations. In order to solve numerically the above equation, whose solutions blow up in finite time, the authors advocate a numerical methodology based on the Strang’s symmetrized operator-splitting scheme. With this approach, one can decouple nonlinearity and differential operators, leading to the alternate solution at every time step of the equation as follows: (i) The first Painlevé ordinary differential equation, (ii) a linear wave equation with a constant coefficient. Assuming that the space dimension is two, the authors consider a fully discrete variant of the above scheme, where the space-time discretization of the linear wave equation sub-steps is achieved via a Galerkin/finite element space approximation combined with a second order accurate centered time discretization scheme. To handle the nonlinear sub-steps, a second order accurate centered explicit time discretization scheme with adaptively variable time step is used, in order to follow accurately the fast dynamic of the solution before it blows up. The results of numerical experiments are presented for different coefficients and boundary conditions. They show that the above methodology is robust and describes fairly accurately the evolution of a rather “violent” phenomenon.  相似文献   

19.
高杨  王贺元 《高等数学研究》2014,(1):77+82-77,82
介绍如何通过变换把二阶变系数线性微分方程转化为一阶非线性微分方程,进而利用待定系数法对其求解,并对二阶变系数线性微分方程与一阶常系数非线性微分方程的内在的关系进行讨论.  相似文献   

20.
谢胜利  瞿娟 《大学数学》2006,22(6):61-65
直接利用混合单调迭代法,研究了Banach空间二阶非线性积分-微分方程组两点边值问题解的存在性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号