首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Piecewise polynomialss(x) of degreem2 and of continuity classC 1 are used to obtain approximating functions to the exact solution of a given (ordinary) integro-differential equation of Volterra type. The unknown coefficients ofs(x) are computed recursively, by requiring thats(x) satisfy the integro-differential equation on a finite set of suitably chosen points. Results on the order of convergence of this method are given, together with a numerical illustration.This research was supported by the National Research of Canada (Grant No. A-4805). Received March 13, 1973. Revised July 2, 1973.  相似文献   

2.
Nonlinear differential delay equations are investigated by means of their associated semigroups. Conditions are found for which solutions have nonexponential decay, but nevertheless behave asymptotically as an inverse power of t.  相似文献   

3.
An efficient method based on operational Tau matrix is developed, to solve a type of system of nonlinear Volterra integro-differential equations (IDEs). The presented method is also modified for the problems with separable kernel. Error estimation of the new schemes are analyzed and discussed. The advantages of this approach and its modification is that, the solution can be expressed as a truncated Taylor series, and the error function at any stage can be estimated. Methods are applied on the four problems with separable kernel to show the applicability and efficiency of our schemes, specially for those problems at broad intervals.  相似文献   

4.
5.
Recently, the convergence rate of the collocation method for integral and integro-differential equations with weakly singular kernels has been studied in a series of papers [1–7]. The present paper belongs to the same series. We analyze the possibility of constructing approximate solutions of high-order accuracy on a uniform or almost uniform grid for weakly singular integro-differential equations of Volterra type.Translated from Differentsialnye Uravneniya, Vol. 40, No. 9, 2004, pp. 1271–1279.Original Russian Text Copyright © 2004 by Pedas.  相似文献   

6.
7.
8.
9.
Using new and known forms of Lyapunov functionals, this paper proposes new stability criteria for a system of Volterra integro-differential equations.  相似文献   

10.
In this paper we study the numerical solutions to parabolic Volterra integro-differential equations in one-dimensional bounded and unbounded spatial domains. In a bounded domain, the given parabolic Volterra integro-differential equation is converted to two equivalent equations. Then, a Legendre-collocation method is used to solve them and finally a linear algebraic system is obtained. For an unbounded case, we use the algebraic mapping to transfer the problem on a bounded domain and then apply the same presented approach for the bounded domain. In both cases, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.  相似文献   

11.
An efficient numerical procedure for solving linear second order Volterra integro-differential equations is presented herein. The scheme is based on B-spline collocation and cubature formulas. Analysis is accompanied by numerical examples. Results confirm reliability and efficiency of the proposed algorithm.  相似文献   

12.
13.
Volterra integrodifferential equations with unbounded operator coefficients in a Hilbert space that are operator models of integrodifferential equations arising in viscoelasticity theory are studied. These equations are shown to be well-posed in Sobolev spaces of vector functions, and spectral analysis is applied to the operator functions that are the symbols of the given equations.  相似文献   

14.
B. Zubik-Kowal  Z. Jackiewicz  F.C. Hoppensteadt 《PAMM》2007,7(1):2020085-2020086
Our study concerns thalamo-cortical systems which are modelled by nonlinear systems of Volterra integro-differential equations of convolution type. The thalamo-cortical systems describe a new architecture for a neurocomputer. Such a computer employs principles of human brain. It consists of oscillators which have different frequencies and are weakly connected via a common medium forced by an external input. Since a neurocomputer consists of many interconnected oscillators (referred also as neurons), the thalamo-cortical systems include large numbers of Volterra integro-differential equations. Solving such systems numerically is expensive not only because of their large dimensions but also because of many kernel evaluations which are needed over the whole interval from the initial point, where the initial condition is imposed, up to the present point, where the computations are currently executed. Moreover, the whole computed history of the solution has to be stored in the memory of the computing machine. Therefore, robust and efficient numerical algorithms are needed for computer simulations for the solutions to the thalamocortical systems. In this paper, we illustrate an iteration technique to solve the thalamo-cortical systems. The proposed successive iterates are vector functions of time, which change the original problems into systems of easier and separated equations. Such separated equations can then be solved in parallel computing environments. Results of numerical experiments are presented for large numbers of oscillators. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We consider the numerical discretization of singularly perturbed Volterra integro-differential equations (VIDE)
(*)
and Volterra integral equations (VIE)
(**)
by tension spline collocation methods in certain tension spline spaces, where is a small parameter satisfying 0<1, and q1, q2, g and K are functions sufficiently smooth on their domains to ensure that Eqs. (*) and (**) posses a unique solution.We give an analysis of the global convergence properties of a new tension spline collocation solution for 0<1 for singularly perturbed VIDE and VIE; thus, extending the existing theory for =1 to the singularly perturbed case.  相似文献   

16.
Iterative and non-iterative methods for the solution of nonlinear Volterra integro-differential equations are presented and their local convergence is proved. The iterative methods provide a sequence solution and make use of fixed-point theory, whereas the non-iterative ones result in series solutions and also make use of fixed-point principles. By means of integration by parts and use of certain integral identities, it is shown that the initial conditions that appear in the iterative methods presented here can be eliminated and the resulting iterative technique is identical to the variational iteration method which is derived here without making any use at all of Lagrange multipliers and constrained variations. It is also shown that the formulation presented here can be applied to initial-value problems in ordinary differential, Volterra’s integral and integro-differential, pantograph, and nonlinear and linear algebraic equations. A technique for improving/accelerating the convergence of the iterative methods presented here is also presented and results in a Lipschitz constant that may be varied as the iteration progresses. It is shown that this acceleration technique is related to preconditioning methods for the solution of linear algebraic equations. It is also argued that the non-iterative methods presented in this paper may not competitive with iterative ones because of possible cancellation errors, if implemented numerically. An analytical continuation procedure based on dividing the interval of integration into disjoint subintervals is also presented and its limitations are discussed.  相似文献   

17.
New and effective quadrature rules generated by boundary value methods are introduced. We employ the introduced quadrature rules to construct quadrature methods for the second kind Volterra integral equations and Volterra integro-differential equations. These methods are shown to be effective and possess excellent convergence properties. The nonlinear multigrid method is applied to solve the discrete systems derived from the introduced numerical scheme. Numerical simulations are presented and confirm the efficiency and accuracy of the methods.  相似文献   

18.
In this paper, the HAM is applied to obtained the series solution of the high-order nonlinear Volterra and Fredholm integro-differential problems with power-law nonlinearity. Two cases are considered, in the first case the set of base functions is introduced to represent solution of given nonlinear problem and in the other case, the set of base functions is not introduced. However, in both cases, the convergence-parameter provides us with a simple way to adjust and control the convergence region of solution series.  相似文献   

19.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

20.
In this paper, we introduce new solutions for fuzzy differential equations as mixed solutions, and prove the existence and uniqueness of global solutions for fuzzy initial value problems involving integro-differential operators of Volterra type. One example is also given by applying mixed solution concept to fuzzy linear differential equations for obtaining their global solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号