首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A class of nonlinear systems with homogeneous right-hand sides and time-varying delay is studied. It is assumed that the trivial solution of a system is asymptotically stable when delay is equal to zero. By the usage of the Lyapunov direct method and the Razumikhin approach, it is proved that the asymptotic stability of the zero solution of the system is preserved for an arbitrary continuous nonnegative and bounded delay. The conditions of stability of time-delay systems by homogeneous approximation are obtained. Furthermore, it is shown that the presented approaches permit to derive delay-independent stability conditions for some types of nonlinear systems with distributed delay. Two examples of nonlinear oscillatory systems are given to demonstrate the effectiveness of our results.  相似文献   

2.
Feedback synthesis of optimal constrained controls for single-input bilinear systems is considered. Quadratic cost functionals (with and without quadratic control penalization) are modified by the inclusion of additional nonnegative state penalizing functions in the respective cost integrands. The latter functions are chosen so as to regularize the problems, in the sense that feedback solutions of particularly simple form are obtained. Finite and infinite time horizon problem formulations are treated, and associated aspects of feedback stabilization of bilinear systems are discussed.  相似文献   

3.
The problem of the stabilizability of stochastic nonlinear hybrid systems with a Markovian or any switching rule is considered. Using the Lyapunov technique sufficient conditions for the asymptotic stabilizability in probability by a smooth controller in every structure are found. In particular, the asymptotic stabilizability in probability problem of stochastic bilinear hybrid systems with a Markovian or any switching rule is discussed and a closed-loop controller is found. Also the sufficient conditions for the exponential mean-square stabilizability for bilinear hybrid systems with any switching based on the Lie algebra approach are formulated and an open-loop controller is designed. The obtained results are illustrated by examples and simulations.  相似文献   

4.
The optimum regulation problem of a bilinear system with a quadratic performance criterion is obtained in terms of a sequence of algebraic Lyapunov equations. The results are based on the method of successive approximations. The proof of convergence of the proposed scheme is given and the design procedure is illustrated by two examples.  相似文献   

5.
Some nonlinear systems can be approximated by switching bilinear systems. In this paper, we proposed a method to design state-based stabilizing controller for switching bilinear systems. Based on the similarity between switching bilinear systems and switching linear systems, corresponding switching linear systems are obtained for switching bilinear systems by applying state-based feedback control laws. Instead, we consider asymptotically stabilizing the corresponding switching linear system through solving a number of relaxed LMI conditions. Stabilizing controllers for switching bilinear systems can be derived based on the results of the corresponding switching linear systems. The stability of the controller is proved step by step through the decreasing of the multiple Lyapunov functions along the state trajectory. The effectiveness of the method is demonstrated by both a theoretical example and an example of urban traffic network with traffic signals.  相似文献   

6.
In this paper, smooth output feedback controllers are presented to stabilize a class of planar switched nonlinear systems with asymmetric output constraints (AOCs). A new common barrier Lyapunov function (CBLF) is developed to prevent the switched system from violating AOCs. Combining the adding a power integrator technique (APIT) and the CBLF, state feedback controllers are designed. Then, reduced-order nonlinear observers are constructed and smooth output feedback controllers are proposed to globally stabilize planar switched nonlinear systems under arbitrary switchings. Meanwhile, the system output meets the prescribed AOCs during operation. The method proposed in this paper is a unified tool because it works not only for switched nonlinear systems with asymmetric or symmetric output constrains but also for those without output constraints. Simulations are presented to verify the proposed method.  相似文献   

7.
The purpose of this paper is to develop nonlinearity tests for open-loop bilinear systems. Lagrange multiplier tests of linear systems against a bilinear alternative are proposed. A simulation study is performed to check the validity of the asymptotic null distributions of the test statistics and to investigate the power characteristics of the tests. Two recent nonlinearity tests in the time-series context are adapted to linear systems and compared with Lagrange multiplier tests. Simulation results show that the proposed Lagrange multiplier tests are more powerful than the other tests.  相似文献   

8.
An exponential observer is constructed for a multi-output observable Bilinear System Class (BSC) in the Diop-Fliess' Observability sense. A differential algebraic approach is proposed for the estimation of the state of a class of bilinear system. A result on Multi-output Translated Fliess' Generalized Observability Canonical Form (MTGOCF) is given.  相似文献   

9.
We apply Artstein's hybrid feedback algorithm to stabilize quasilinear dynamical systems with complex multipliers in the plane. We study only the case of incomplete observation when ordinary feedback controls do not work. The main results of the paper state that Artstein's procedure provides an arbitrary rate of asymptotic convergence/divergence of solutions. In other words, we prove the complete controllability from below of the upper Lyapunov exponent and the uniform upper Lyapunov exponent for the quasilinear systems in question.  相似文献   

10.
This paper is concerned with the co-design of event-triggered sampling, dynamic input quantization and constrained switching for a switched linear system. The mismatch between the plant and its corresponding controller is considered. This behavior is raised by switching within the event-triggered sampling interval. Accordingly, novel update laws of dynamic quantization parameter are designed separately for matched sampling intervals (without switching) and mismatched sampling intervals (with a switch). We technically transform the total variation (increment or decrement) of Lyapunov functions in one sampling interval into the discrete-time update of quantization parameter. Based on this transformation, a hybrid quantized control policy is developed. This policy, in conjunction with the average dwell-time switching law and the constructed event-triggered condition, can ensure the exponential stabilization of the switched system with finite-level quantized input. Besides, the event-triggered scheme is proved to be Zeno-free. The effectiveness of the developed method is verified by a simulation example.  相似文献   

11.
We consider bilinear control systems of the form y′(t) = Ay(t) + u(t)By(t) where A generates a strongly continuous semigroup of contraction (e t A ) t⩾0 on an infinite-dimensional Hilbert space Y whose scalar product is denoted by 〈.,.〉. The function u denotes the scalar control. We suppose that B is a linear bounded operator from the state Y into itself. Tacking into account the control saturation, we study the problem of stabilization by feedback of the form u(t)=−f(〈By(t), y(t)〉). Application to the heat equation is considered.   相似文献   

12.
13.
In this note, we study the exponential stability of impulsive functional differential systems with infinite delays by using the Razumikhin technique and Lyapunov functions. Several Razumikhin-type theorems on exponential stability are obtained, which shows that certain impulsive perturbations may make unstable systems exponentially stable. Some examples are discussed to illustrate our results.  相似文献   

14.
There has been growing interest in analyzing stability in design controls of stochastic systems. This interest arises out of the need to develop robust control strategies for systems with uncertain dynamics. This paper is concerned with the examination of conditions under which the desired structure of a stochastic interval system with time dependent parameters is stabilizable. Necessary and sufficient condition under which two-level preconditioner guarantees quadratic mean exponential stability of the desired structure of uncontrolled stochastic interval system is presented. Sufficient condition for exponential stability of the equilibrium solution of uncontrolled stochastic interval system is also presented.  相似文献   

15.
In this note, a common quadratic Lyapunov function is explicitly calculated for a linear hybrid system described by a family of simultaneously triangularizable matrices. The explicit construction of such a function allows not only obtaining an estimate of the convergence rate of the exponential stability of the switched system under arbitrary switching but also calculating an upper bound for the output during its transient response. Furthermore, the presented result is then extended to the case where the system is affected by parametric uncertainty, providing the corresponding results in terms of the nominal matrices and uncertainty bounds.  相似文献   

16.
This paper investigates the problem of global fixed-time stabilization for a class of uncertain switched nonlinear systems with the general powers, namely, the powers of the considered systems can be different odd rational numbers, even rational numbers or both odd and even rational numbers. By skillfully using the common Lyapunov function method and the adding a power integrator technique, a common state feedback control strategy is developed. It is proved that the proposed controller can guarantee that the state of the resulting closed-loop system converges to zero for any given fixed time under arbitrary switchings. Simulation results of the liquid-level system are provided to show the effectiveness of the proposed method.  相似文献   

17.
In this paper, the problem of exponential stabilization for a class of linear systems with time-varying delay is studied. The time delay is a continuous function belonging to a given interval, which means that the lower and upper bounds for the time-varying delay are available, but the delay function is not necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals combined with Leibniz-Newton’s formula, new delay-dependent sufficient conditions for the exponential stabilization of the systems are first established in terms of LMIs. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.  相似文献   

18.
The exponential and global stability of nonlinear differential dynamical systems with different initial times are investigated. Several criteria for the stability of nonlinear dynamical systems relative to initial time difference are obtained by means of vector Lyapunov functions. The obtained criteria have been applied to a proposed differential dynamic system. The numerical simulation validates our conclusions.  相似文献   

19.
Decentralized stabilization of a class of interconnected systems   总被引:2,自引:0,他引:2  
Abstract. This paper is concerned with the decentralized stabilization of continuous and discretelinear interconnected systems with the structural constraints about the interconnection matri-ces. For the continuous case,the main improvement in the paper as compared with the corre-sponding results in the literature is to extend the considered class of systems from S to S“ (bothwill be defined in the paper) without resulting in high decentralized gain and difficult numericalcomputation. The algorithm for obtaining decentralized state feedback control to stable theoverall system is presented. The discrete case and some very useful results are discussed aswell.  相似文献   

20.
Finite time stability and stabilization of a class of continuous systems   总被引:2,自引:0,他引:2  
Finite time stability is investigated for continuous system which satisfies uniqueness of solutions in forward time. A necessary and sufficient condition for finite time stability is given for this class of systems using Lyapunov functions. Then, a necessary and sufficient condition is developed for finite time stabilization of class CLk-affine systems involving a class CL0-settling-time function for the closed-loop system. Finally an explicit feedback control is addressed by using a control Lyapunov function verifying a certain inequality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号