首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Surface-induced phase transition of asymmetric diblock copolymer in selective solvents is first theoretically investigated by using the real-space version of self-consistent field theory (SCFT). By varying the distance between two parallel hard surfaces (or the film thickness) W and the block copolymer concentration f(p), several morphologies are predicted and the phase diagram is constructed. Self-assembly morphologies of the diblock copolymer in dilute solution are found to change significantly with different film thickness. In confined systems, stable morphologies found in the bulk solution become unstable due to the loss of polymer conformation entropy. We find that in a very dilute block copolymer solution, phase separation can be induced through polymer depletion as the solution becomes more confined. Our findings provide an interesting starting point for a renewed effort in both experimental and theoretical investigations of confined block copolymer solutions.  相似文献   

2.
The complex microstructures of amphiphilic ABC linear triblock copolymers in which one of the end blocks is relatively short and hydrophilic, and the other two blocks B and C are hydrophobic in a dilute solution, have been investigated by the real-space implementation of self-consistent field theory (SCFT) in two dimensions (2D). In contrast to diblock copolymers in solution, the aggregation of triblock copolymers are more complicated due to the presence of the second hydrophobic blocks and, hence, big ranges of parameter space controlling the morphology. By tailoring the hydrophobic degree and its difference between the blocks B and C, the various shapes of vesicles, circlelike and linelike micelles possibly corresponding to spherelike, and rodlike micelles in 3D, and especially, peanutlike micelles not found in diblock copolymers are observed. The transition from vesicles to circlelike micelles occurs with increasing the hydrophobicity of the blocks B and C, while the transition from circlelike micelles to linelike micelles or from the mixture of micelles and vesicles to the long linelike micelles takes place when the repulsive interaction of the end hydrophobic block C is stronger than that of the middle hydrophobic block B. Furthermore, it is favorable for dispersion of the block copolymer in the solvent into aggregates when the repulsion of the solvent to the end hydrophobic block is larger than that of the solvent to the middle hydrophobic block. Especially when the bulk block copolymers are in a weak segregation regime, the competition between the microphase separation and macrophase separation exists and the large compound micelle-like aggregates are found due to the macrophase separation with increasing the hydrophobic degree of blocks B and C, which is absent in diblock copolymer solution. The simulation results successfully reproduce the existing experimental ones.  相似文献   

3.
采用Monte Carlo模拟方法研究了具有相同链长和组分比的不同嵌段序列的AB两嵌段共聚物与ABA三嵌段共聚物在选择性溶剂中形成囊泡的动力学过程. 模拟结果表明, AB两嵌段共聚物囊泡的形成与ABA三嵌段共聚物囊泡的形成的动力学过程不同. 在慢速退火条件下, ABA三嵌段共聚物囊泡是通过亲水链段向胶束的表面和中心扩散而形成的, 而AB两嵌段共聚物囊泡则由片层弯曲闭合而形成. 相对而言, 退火速度对AB两嵌段共聚物囊泡形成的动力学过程没有显著影响, 其改变仅影响亲水链段与疏水链段发生相分离的难易程度. 当退火速度较快时, 亲水链段和疏水链段发生相分离的速度较快且相分离发生在囊泡形成之前; 而当退火速度较慢时亲水链段和疏水链段之间的相分离在囊泡形成之后仍在进行.  相似文献   

4.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micellar structures from hamburger, to segmented wormlike, to toroidal segmented micelles, and finally to vesicles with simultaneously increasing hydrophobic lengths of blocks B and C. When the length of hydrophobic blocks B and C is asymmetric, specific bead-on-string worm micelles are found. Particularly, when the star ABC triblock copolymer is in a strong segregation regime and both B and C blocks are strongly hydrophobic, quite long segmented wormlike micelles are obtained, which had not been found in previously investigated diblock and linear ABC triblock copolymers solution. Additionally, raspberry micelles with beads dispersed on the core also occur in the strong segregation regime of bulk star ABC triblock copolymers. Furthermore, the aggregate morphology of ABC star triblock copolymers is strongly influenced by the addition of linear AB diblock copolymers. The most significant feature is that the long segmented worms will become shorter, to form hamburger micelles with the addition of AB diblock copolymers. These simulations are in good agreement with the experimental findings by Lodge's group.  相似文献   

5.
汪蓉  薛奇 《高分子科学》2009,27(4):583-592
Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory.The middle block B and the coated polymer form one phase and the alternating phase A and phase C occur when the film is very thin either for the neutral or selective hard surface(which is opposite to the brushcoated substrate).The lamellar phase is stable on the hard surface when it is neutral and interestingly,the short block tends to stay on this hard surf...  相似文献   

6.
Assemblies of block copolymer amphiphiles are sometimes viewed as glassy, frozen, or static colloids, especially in strongly segregating solutions. Here, we visualize by fluorescence microscopy and AFM the dynamics and transitions of single cylindrical micelles and vesicles composed of a charged diblock copolymer in water. In mapping the salt- and pH-dependent phase diagrams of a near-symmetric diblock of poly(acrylic acid)-polybutadiene, low pH and high salt (NaCl, CaCl2) neutralize and screen the charged corona sufficiently to foster membrane formation and generate vesicles. Decreased salt and neutral pH increases intra-coronal repulsion and drives a transition to multi-branched cylinders and highly stable, but fluid and flexible, worm micelles. Ca2+ both stiffens cylinders and stabilizes them relative to spheres. Further increase of intra-coronal repulsion generates spherical micelles by fragmentation and pinch-off at the ends of worms. Both the transition kinetics and phase diagrams indicate divalent cation is about 5-10-fold more effective than monovalent in stabilizing all nonspherical morphologies.  相似文献   

7.
The phase behaviors of symmetric diblock copolymer thin films confined between two hard,parallel and diversified patterned surfaces are investigated by three-dimensional dissipative particle dynamics(DPD)simulations.The induction of diversified patterned surfaces on phase separation of symmetric diblock copolymer films in snapshots,density profiles and concentration diagrams of the simulated systems are presented.The phase separations can be controlled by the patterned surfaces.In the meantime,the mean-s...  相似文献   

8.
Joint micellization of two amphiphilic diblock copolymers is studied by velocity sedimentation, transmission electron microscopy, electrophoretic mobility measurements, and static light scattering. One of the diblock copolymers is a strong polyelectrolyte (polystyrene-block-poly(N-ethyl-4-vinylpyridinium bromide)), while the second one is a weakly charged or uncharged copolymer (polystyrene-block-poly(acrylic acid) or polystyrene-block-poly(4-vinylpyridine)). It is shown that the mixing of the diblock copolymers in a selective aqueous-organic solvent (DMF-methanol-water) leads to the formation of joint (hybrid) micelles and that the composition of these micelles is close to the composition of the polymer mixture. Micelles consist of an insoluble polystyrene core and a mixed corona composed of blocks of a strong polyelectrolyte and a weakly charged or uncharged copolymer. Aqueous dispersions of mixed micelles are obtained with the use of the dialysis technique, the spherical morphology of the micelles is ascertained, and their three-layered structure is proposed. The nonlinear dependence of the molecular mass of micelles on their composition is found. The decisive effect of electrostatic repulsion between strong polyelectrolyte units on the thermodynamics of micellization and the dispersion stability and molecular-mass characteristics of the mixed micelles is demonstrated.  相似文献   

9.
Summary: Using bond length fluctuation and cavity diffusion algorithm, the morphologies of diblock copolymer/homopolymer blend films, AB/C and AB/A, confined between two hard walls are studied via Monte Carlo (MC) simulation on a cubic lattice. For the AB/C film, the C homopolymer is supposed to be more compatible with the A block than with the B block, while A and B are mutually incompatible. Effects of the composition of the diblock copolymer/homopolymer mixture, the symmetry of the diblock copolymer chain, the film thickness and the selective wall field on morphologies are studied in detail. Furthermore, the simulated results are compared with that of corresponding ABA and ABC triblock copolymer thin films. Comparisons with experiments and SCF theory also show good agreement. The results indicate that both the AB/C and AB/A can be used to prepare porous AB diblock copolymer membranes, the size of the pore channel can be controlled by the volume fraction of homopolymer C or homopolymer A.

Morphology of A6B14/C10 polymer blend film.  相似文献   


10.
For the controlled modification of sol-gel-templated polymer nanocomposites, which are transferred to a nanostructured, crystalline TiO2 phase by a calcination process, the addition of a single homopolymer was investigated. For the preparation, the homopolymer polystyrene (PS) is added in different amounts to the diblock copolymer P(S-b-EO) acting as a templating agent. The homopolymer/diblock copolymer blend system is combined with sol-gel chemistry to provide and attach the TiO2 nanoparticles to the diblock copolymer. So-called good-poor solvent-pair-induced phase separation leads to the formation of nanostructures by film preparation via spin coating. The fabricated morphologies are studied as a function of added homopolymer before and after calcination with atomic force microscopy, field emission scanning electron microscopy, and grazing incidence small-angle X-ray scattering. The observed behavior is discussed in the framework of controlling the block copolymer morphologies by the addition of homopolymers. At small homopolymer concentrations, the increase in homopolymer concentration changes the structure size, whereas at high homopolymer concentrations, a change in morphology is triggered. Thus, the behavior of a pure polymer system is transferred to a more complex hybrid system.  相似文献   

11.
采用Monte Carlo模拟方法研究了多分散性AB两亲性两嵌段共聚物在选择性溶剂中的自组装行为.模拟结果表明,嵌段共聚物的多分散性对体系在选择性溶剂中自组装所形成的胶束形貌结构有很大影响.当AB两嵌段共聚物的多分散系数由1.0增加至1.4时,体系中自组装所形成的胶束将会发生由囊泡到片层直至球状的一系列形态转变.通过统...  相似文献   

12.
Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we applied the simulated annealing method to study the self-assembly of ABC linear terpolymers in C-selective solvents. Simulations predict a variety of patchy and patchy-like multicompartment micelles with high symmetry and also yield a detailed phase diagram to reveal how to control the patchy multicompartment micelle morphologies precisely. The phase diagram demonstrates that the internal segregated micellar structure depends on the ratio between the volume fractions of the two solvophobic blocks and their incompatibility, whereas the overall micellar shape depends on the copolymer concentration. The relationship between the interfacial energy, stretching energy of chains and the micellar morphology, micellar morphological transition are elucidated by computing the average contact number among the species, the mean square end-to-end distances of the whole terpolymers, the AB blocks in the terpolymers, the AB diblock copolymers, and angle distribution of terpolymers. The anchoring effect of the solvophilic C block on micellar structures is also examined by comparing the morphologies formed from ABC terpolymers and AB diblock copolymers.  相似文献   

13.
Polymerization-induced self-assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so-called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub-10 nm surface features. By varying the degree of polymerization of the stabilizer and core-forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre-organization of copolymer chains within sterically-stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution-cast molecularly-dissolved copolymer chains.  相似文献   

14.
A simple route to fabricate functional nano-objects via self-assembly of block copolymer-based hybrid materials is described. In water–toluene mixtures, spheres, rod-like morphologies, and ring-like morphologies as well as vesicles of metal loaded block copolymers micelles are fabricated. The concept is generic to realize different functionalities by incorporating various inorganic components (Au, Ag, Pt, Co…) into the block copolymer matrix. A mechanism describing the formation of micellar aggregates with different morphologies is presented based on a simple force balance approach. Moreover, the composition of the solvent mixture is modified to gain control over the morphology of micellar aggregates. It was found that swelling of the micelle core with a selective cosolvent is the driving force to induce morphology transitions from spherical to rod- and ring-like structures as well as vesicles. These nano-objects can be further used as building blocks to construct well-defined structures via self-assembly in spin coated thin films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1642–1650, 2010  相似文献   

15.
While incompatible block copolymers commonly assemble into several established classical or complex morphologies, highly asymmetric poly(ferrocenyldimethylsilane-b-dimethylsiloxane) (PFS-b-PDMS) diblock copolymers can also self-organize into high-aspect-ratio nanotubes with PDMS corona in the presence of PDMS-selective organic solvents. Exposure of these nanotubes on a carbon substrate to supercritical carbon dioxide (scCO2), also a PDMS-selective solvent, appears to promote partial dissolution of the copolymer molecules. At sufficiently high copolymer concentrations, the dissolved molecules subsequently re-organize within the scCO2 environment to form new copolymer nanostructures that redeposit on the substrate upon scCO2 depressurization. Transmission electron microscopy reveals that micelles form under all the conditions examined here, whereas nanotubes coalesce and vesicles develop only at relatively high temperatures. The extent to which the copolymer nanotubes dissolve and the size distribution of the replacement micelles are sensitive to exposure conditions. These results suggest that the phase behavior of PFS-b-PDMS diblock copolymers in scCO2 may be remarkably rich and easily tunable.  相似文献   

16.
Reported here is self‐assembly behavior in selective solvent of diblock copolymers with relatively long corona‐forming block compared to core‐forming block. Three diblock copolymers, poly(ethylene glycol) monomethyl ether‐b‐poly(methacryloyl‐L ‐leucine methyl ester), also denoted as MPEG‐b‐PMALM copolymer, were prepared by fixing MPEG block with an average number of repeating units of 115, whereas varying PMALM block with an average number of repeating unit of 44, 23, 9, respectively. Multiple morphologies, such as sphere, cylinder, vesicle, and their coexisted structures from self‐assembly of these diblock copolymers in aqueous media by changing block nonselective solvent and initial polymer concentration used in preparation, were demonstrated directly via TEM observation. These results herein might, therefore, demonstrate as an example that a wide range of morphologies can be accessed not only from “crew‐cut micelles” but also from “star‐micelles” by controlling over preparation strategies. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 364–371, 2010  相似文献   

17.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy. A mixed solvent containing 60 wt % tetrahydrofuran corresponds to the transition point, as verified by analysis of a poly(ethylethylene)-poly(ethylene oxide) diblock copolymer in the same solvent mixtures. Furthermore, cryogenic transmission electron microscopy suggests that, as the poly(ethylethylene) block transitions from the core to the corona, the micelle morphologies evolve from disks to oblate ellipsoid micelles (with some vesicles), with worms and spheres evident at intermediate compositions.  相似文献   

18.
Polymerization‐induced self‐assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so‐called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub‐10 nm surface features. By varying the degree of polymerization of the stabilizer and core‐forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre‐organization of copolymer chains within sterically‐stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution‐cast molecularly‐dissolved copolymer chains.  相似文献   

19.
The formation of reverse micelles of amphiphilic diblock copolymers of styrene and 2-vinylpyridine in selective (for one of the blocks) solvent (toluene) is studied by dynamic light scattering and atomic force and transmission electron microscopies, as well as by absorption spectroscopy and X-ray photoelectron spectroscopy techniques. It is revealed that the behavior of micelles of block copolymers with different ratios of block lengths and absolute molecular masses in solution is fundamentally different depending on the amount of added metal salt. The possibility of controlled variations in the characteristic sizes of two-dimensional ordered ensembles of micelles on the surface of silicon wafers is demonstrated. It is shown that, in some cases, the distance between the centers of micelles in ensemble depends on the concentration of copolymer solution and the amount of metal salt preliminarily added to the solution.  相似文献   

20.
Using the self-consistent field theory (SCFT), we investigate the phase behavior of a mixture of diblock copolymers and nanoparticles with monodisperse polymer chains tethered to their surfaces. We assume the size of the nanoparticles to be much smaller than that of the attached polymer chains and therefore model the particles with their grafted polymer "shell" as star polymers. The polymer chains attached to the particles are of the same species as one of the blocks of the symmetric diblock copolymer. Of primary interest is how to tune the shell of the particle by changing both the length and number of tethered polymers in order to achieve higher loading of nanoparticles within an ordered structure without macrophase separation occurring. We find that the phase behavior of the system is very sensitive to the size of the particle including its tethered shell. The region of microphase separation is increased upon decreasing the star polymer size, which may be achieved by shortening and/or removing tethered polymer chains. To explore the possible structures in these systems we employ SCFT simulations that provide insight into the arrangement of the different species in these complex composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号