首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conformational preference of the glycosidic linkage of methyl-beta-mannose was studied in the gas phase and in aqueous solution by ab initio calculations, and by molecular dynamics (MD) and Car-Parrinello molecular dynamics (CPMD) simulations. MD simulations were performed with various water potential functions to study the impact of the chosen water potential on the predicted conformational preference of the glycosidic linkage of the carbohydrate in solution. This study shows that the trans (t) orientation of the glycosidic linkage of methyl-beta-mannose is preferred over its gauche clockwise (g+) orientation in solution. CPMD simulations clearly indicate that this preference is due to intermolecular hydrogen bonding with surrounding water molecules, whereas no such information could be demonstrated by MD simulations. This study demonstrates the importance of ab initio molecular dynamics simulations in studying the structural properties of carbohydrate-water interactions.  相似文献   

2.
Car-Parrinello molecular dynamics (CPMD) simulations, DFT chemical reactivity index calculations, and mass spectrometric measurements are combined in an integrated effort to elucidate the details of the coordination of a transition-metal ion to a carbohydrate. The impact of the interaction with the FeIII ion on the glycosidic linkage conformation of methyl-alpha-d-mannopyranoside is studied by classical molecular dynamics (MD) and CPMD simulations. This study shows that FeIII interacts with specific hydroxyl oxygen atoms of the carbohydrate, affecting the ground state carbohydrate conformation. These conformational details are discussed in terms of a set of supporting experiments involving electrospray ionization mass spectrometry, and CPMD simulations clearly indicate that the specific conformational preference is due to intramolecular hydrogen bonding. Classical MD simulations proved insensitive to these important chemical properties. Thus, we demonstrate the importance of chemical reactivity calculations and CPMD simulations in predicting the active sites of biological molecules toward metal cations.  相似文献   

3.
Car-Parrinello molecular dynamics (CPMD) calculations are presented for a Na (+)(Phe) complex in aqueous solution and for various stable Na (+)(Phe) complexes and Na (+)(H 2O) n clusters in the gas phase (with up to six water molecules). The CPMD results are compared to available experimental and ab initio reference data, to DFT results obtained with various combinations of density functionals and basis sets, and to previous classical mechanics MD simulations. The agreement with the reference data in the gas phase validates the CPMD method, showing that it is a valid approach for studying these systems and that it describes correctly the competing Na (+)-Phe and Na (+)-H 2O interactions. Analysis of MD trajectories reveals that the Na (+)(Phe) complex in aqueous solution maintains a stable configuration in which the Na (+) cation hovers above the phenyl ring, at an average distance of 3.85 A from the ring center, while remaining strongly bound to one of the carboxylic oxygens of Phe. Constrained MD simulations indicate that the free energy barrier opposing dissociation of the complex exceeds 5.5 kcal/mol. We thus confirm that "cation- pi" interactions between alcali cations and the pi ring, combined with other kinds of interactions, may allow aromatic amino acids to overcome the competition with water in binding a cation.  相似文献   

4.
The optimized geometry and energetic properties of Fe(D2O)n 3+ clusters, with n = 4 and 6, have been studied with density-functional theory calculations and the BLYP functional, and the hydration of a single Fe 3+ ion in a periodic box with 32 water molecules at room temperature has been studied with Car-Parrinello molecular dynamics and the same functional. We have compared the results from the CPMD simulation with classical MD simulations, using a flexible SPC-based water model and the same number of water molecules, to evaluate the relative strengths and weaknesses of the two MD methods. The classical MD simulations and the CPMD simulations both give Fe-water distances in good agreement with experiment, but for the intramolecular vibrations, the classical MD yields considerably better absolute frequencies and ion-induced frequency shifts. On the other hand, the CPMD method performs considerably better than the classical MD in describing the intramolecular geometry of the water molecule in the first hydration shell and the average first shell...second shell hydrogen-bond distance. Differences between the two methods are also found with respect to the second-shell water orientations. The effect of the small box size (32 vs 512 water molecules) was evaluated by comparing results from classical simulations using different box sizes; non-negligible effects are found for the ion-water distance and the tilt angles of the water molecules in the second hydration shell and for the O-D stretching vibrational frequencies of the water molecules in the first hydration shell.  相似文献   

5.
6.
The Car-Parrinello molecular dynamics (CPMD) method was used to study the dynamic characteristics of the cation-pi interaction between ammonium and benzene in gaseous and aqueous media. The results obtained from the CPMD calculation on the cation-pi complex in the gaseous state were very similar to those calculated from the Gaussian98 program with DFT and MP2 algorithms, demonstrating that CPMD is a valid approach for studying this system. Unlike the interaction in the gaseous state, our 12-ps CPMD simulation showed that the geometry of the complex in aqueous solution changes frequently in terms of the interaction angles and distances. Furthermore, the simulation revealed that the ammonium is constantly oscillating above the benzene plane in an aqueous environment and interacts with benzene mostly through three of its hydrogen atoms. In contrast, the interaction of the cation with the aromatic molecule in the gaseous state involves two hydrogen atoms. In addition, the free energy profile in aqueous solution was studied using constrained CPMD simulations, resulting in a calculated binding free energy of -5.75 kcal/mol at an optimum interaction distance of approximately 3.25 A, indicating that the cation-pi interaction between ammonium and benzene is stable even in aqueous solution. Thus, this CPMD study suggested that the cation-pi interaction between an ammonium (group) and an aromatic structure could take place even on surfaces of protein or nucleic acids in solution.  相似文献   

7.
管清梅  杨忠志 《中国化学》2007,25(6):727-735
A detailed theoretical investigation on Co^3+ hydration in aqueous solution has been carded out by means of molecular dynamics (MD) simulations based on the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM). The effective Co^3+ ion-water potential has been constructed by fitting to ab initio structures and binding energies for ionic clusters. And then the ion-water interaction potential was applied in combination with the ABEEM-7P water model to molecular dynamics simulations of single Co^3+(aq.) solution, managing to reproduce many experimental structural and dynamical properties of the solution. Here, not only the common properties (radial distribution function, angular distribution function and solvation energy) obtained for Co^3+ in ABEEM-7P water solution were in good agreement with those from the experimental methods and other molecular dynamics simulations but also very interesting properties of charge distributions, geometries of water molecules, hydrogen bond, diffusion coefficients, vibrational spectra are investigated by ABEEM/MM model.  相似文献   

8.
Car-Parrinello molecular dynamics (CPMD) simulations have been performed on ubisemiquinone radical anion in aqueous solution. The different types of hydrogen bonding formed between the semiquinone and the solvent were studied in terms of frequency and directionality, in comparison with the parent benzosemiquinone radical anion. The EPR parameters (g-tensors and hyperfine coupling constants) were obtained from quantum chemical property calculations performed on snapshots along the MD trajectory, and the contributions of different solvation effects to the EPR parameters have been evaluated. The influence of the anion’s conformational behaviour was examined, including the orientation-dependent effects of hyperconjugation on side-chain hyperfine coupling.  相似文献   

9.
The alpha-, beta-, and gamma-cyclodextrin (CyDs) dimers were studied by molecular dynamics (MD) simulations in water as an explicit solvent. The relative stability of dimers and the involved molecular interactions were determined. Three possible starting orientations were considered for the dimers: head-to-head, head-to-tail, and tail-to-tail. MD simulations were performed over a period of 5 ns to ensure the stability of the system for both the CyD dimers and monomers. The MM-PBSA methodology was used to obtain the free binding energy of the dimers and to determine the most stable arrangement for each solvated CyD. In a vacuum, MD simulations provided the head-to-head orientation as the most stable orientation for the three CyDs, while in aqueous solution the, the head-to-tail orientation was found to be the most stable for the alpha-CyD dimer and the tail-to-tail orientation the most stable for the beta- and gamma-CyD dimers.  相似文献   

10.
11.
A molecular based understanding of beryllium chemistry in the context of biomolecules is necessary for gaining progress in prevention and treatment of chronic beryllium disease. One aspect that has hindered the theoretical progress has been the lack of a simple classical two-body potential for the aqueous beryllium ion (Be2+) to be used with biomolecular simulations. We provide new parameters for Be2+ that capture the structural and reactive properties of this small dication. Using classical molecular dynamics simulations, we show that these parameters reproduce the correct radial distribution function and coordination numbers for this cation in explicit aqueous solution when compared to published diffraction and NMR measurements. The geometrical parameters obtained using classical simulations are also in agreement with ab initio calculations. We successfully predict the vibrational modes of the tetra aqua Be2+ dication from ab initio calculations on solvated structures obtained from the simulations. The calculated vibrational modes show better agreement with experiments compared to any published work. This new potential also produces a well-established hydrogen bonding between the first and second solvation shells. More importantly, when the molecular dynamics (MD) and ab initio results are interpreted in concert, the dynamics and nature of interactions between the first and second shells capture the pivotal role they play on the reactivity of aqua-Be complexes.  相似文献   

12.
Carbonate anion exchange reactions with water in the uranyl-carbonate and calcium-uranyl-carbonate aqueous systems have been investigated using computational methods. Classical molecular dynamics (MD) simulations with the umbrella sampling technique were employed to determine potentials of mean force for the exchange reactions of water and carbonate. The presence of calcium counter-ions is predicted to increase the stability of the uranyl-carbonate species in accordance with previous experimental observations. However, the free energy barrier to carbonate exchange with water is found to be comparable both in the presence and absence of calcium cations. Possible implications of these results for uranyl adsorption on mineral surfaces are discussed. Density functional theory (DFT) calculations were also used to confirm the trends observed in classical molecular dynamics simulations and to corroborate the validity of the potential parameters employed in the MD scheme.  相似文献   

13.
14.
Bühl M  Wipff G 《Chemphyschem》2011,12(17):3095-3105
First-principles and purely classical molecular dynamics (MD) simulations for complexes of the uranyl ion (UO(2)(2+)) are reviewed. Validation of Car-Parrinello MD simulations for small uranyl complexes in aqueous solution is discussed. Special attention is called to the mechanism of ligand-exchange reactions at the uranyl centre and to effects of solvation and hydration on coordination and structural properties. Large-scale classical MD simulations are surveyed in the context of liquid-liquid extraction, with uranyl complexes ranging from simple hydrates to calixarenes, and nonaqueous phases from simple organic solvents and supercritical CO(2) to ionic liquids.  相似文献   

15.
Fourier transform infrared spectroscopy is a popular method for the experimental investigation of hydrogen-bonded aggregates, but linking spectral information to microscopic information on aggregate size distribution and aggregate architecture is an arduous task. Static electronic structure calculations with an implicit solvent model, Car-Parrinello molecular dynamics (CPMD) using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and classical molecular dynamics simulations for the all-atom version of the optimized parameters for liquid simulations (OPLS-AA) force field were carried out for an ensemble of 1-hexanol aggregates solvated in n-hexane. The initial configurations for these calculations were size-selected from a distribution of aggregates obtained from a large-scale Monte Carlo simulation. The vibrational spectra computed from the static electronic structure calculations for monomers and dimers and from the CPMD simulations for aggregates up to pentamers demonstrate the extent of the contribution of dangling or nondonating hydroxyl groups found in linear and branched aggregates to the "monomeric" peak. Furthermore, the computed spectra show that there is no simple relationship between peak shift and aggregate size nor architecture, but the effect of hydrogen-bond cooperativity is shown to differentiate polymer-like (cooperative) and dimer-like (noncooperative) hydrogen bonds in the vibrational spectrum. In contrast to the static electronic structure calculations and the CPMD simulations, the classical molecular dynamics simulations greatly underestimate the vibrational peak shift due to hydrogen bonding.  相似文献   

16.
17.
Classical molecular dynamics (MD) simulations are employed as a tool to investigate structural properties of ice crystals under several temperature and pressure conditions. All ice crystal phases are analyzed by means of a computational protocol based on a clustering approach following standard MD simulations. The MD simulations are performed by using a recently published classical interaction potential for oxygen and hydrogen in bulk water, derived from neutron scattering data, able to successfully describe complex phenomena such as proton hopping and bond formation/breaking. The present study demonstrates the ability of the interaction potential model to well describe most ice structures found in the phase diagram of water and to estimate the relative stability of 16 known phases through a cluster analysis of simulated powder diagrams of polymorphs obtained from MD simulations. The proposed computational protocol is suited for automated crystal structure identification.  相似文献   

18.
Heating of polycrystalline cis aquabis(L-valinato)copper(II) at 90 °C resulted in a dehydrated powder. Recrystallization from aqueous solution of the obtained product yielded anhydrous trans bis(L-valinato)copper(II). The X-ray crystal and molecular structures of trans bis(L-valinato)copper(II) and cis aquabis(L-valinato)copper(II) are presented. Molecular modeling calculations were attempted to resolve factors that influenced the isomerization and crystallization of either the aqua cis- or the anhydrous trans-isomer. Conformational analyses of trans- and cis-isomers were completed in vacuo and in crystal by molecular mechanics, and in aqueous solution by molecular dynamics (MD) simulations using the same force field. Although the conformers with trans-configuration are the most stable in vacuo, those with cis-configuration form more favorable intermolecular interactions. Consequently, both cis- and trans-isomers are predicted to be present in aqueous solution. According to the crystal structure simulations and predictions, cis-isomer requires water molecules to form energetically more stable crystal packings than trans-isomer. The MD modeling of the self-assembly of 16 bis(L-valinato)copper(II) complexes in aqueous solution for the first time predicted the crystallization nucleus formation to proceed from monomers to oligomers by Cu-to-O(carboxylato) and/or N-H···O(carboxylato) weak bonds; these oligomers then bind together via water molecules until they acquire the right positions for noncovalent bonding like in the experimental crystal structures. Fifty-nanosecond MD simulations accomplished for a system consisting of equal numbers of complexes and water molecules at 298 and 370 K suggested complete cis-to-trans transformation at the higher temperature. Prevalence of either cis- or trans-conformers in water upon dissolvation may explain the crystallization results.  相似文献   

19.
We compare a new classical water model, which features Gaussian charges and polarizability (GCPM) with ab initio Car-Parrinello molecular dynamics (CPMD) simulations. We compare the total dipole moment, the total dipole moment distribution, and degree of hydrogen bonding at ambient to supercritical conditions. We also compared the total dipole moment calculated from both the electron density (partitioning the electron density among molecules based on a zero electron flux condition), and from the center of localized Wannier function centers (WFCs). Compared to CPMD, we found that GCPM overpredicts the dipole moment derived by partitioning the electron density and underpredicts that obtained from the WFCs, but exhibits similar trends and distribution of values. We also found that GCPM predicted similar degrees of hydrogen bonding compared to CPMD and has a similar structure.  相似文献   

20.
Unrestrained molecular dynamics (MD) simulations have been carried out to characterize the stability of DNA conformations and the dynamics of A-DNA→B-DNA conformational transitions in aqueous RbCl solutions. The PARM99 force field in the AMBER8 package was used to investigate the effect of RbCl concentration on the dynamics of the A→B conformational transition in the DNA duplex d(CGCGAATTCGCG)2 . Canonical Aand B-form DNA were assumed for the initial conformation and the final conformation had a length per complete turn that matched the canonical B-DNA. The DNA structure was monitored for 3.0 ns and the distances between the C5′ atoms were obtained from the simulations. It was found that all of the double stranded DNA strands of A-DNA converged to the structure of B-form DNA within 1.0 ns during the unrestrained MD simulations. In addition, increasing the RbCl concentration in aqueous solution hindered the A→B conformational transition and the transition in aqueous RbCl solution was faster than that in aqueous NaCl solution for the same electrolyte strength. The effects of the types and concentrations of counterions on the dynamics of the A→B conformational transition can be understood in terms of the variation in water activity and the number of accumulated counterions in the major grooves of A-DNA. The rubidium ion distributions around both fixed A-DNA and B-DNA were obtained using the restrained MD simulations to help explain the effect of RbCl concentration on the dynamics of the A→B conformational transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号