首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two novel mixed (phthalocyaninato)(porphyrinato) rare-earth and cadmium heterometal complexes have been fabricated in one-pot reaction and their sandwich quadruple-decker nature is unambiguously revealed by X-ray single crystal analysis.  相似文献   

2.
Correlation between molecular structures and slow relaxation of magnetization of three mixed (phthalocyaninato)(porphyrinato) dysprosium(III) double-deckers clearly reveals the effect of the sandwich-type molecular structure, in particular the twist angle, on the quantum tunneling (QT) at zero dc field of these complexes, providing the first direct evidence to the theoretical inference.  相似文献   

3.
Three sandwich-type (phthalocyaninato)(porphyrinato) europium triple-decker complexes, namely Eu(2)(Pc)(2)(TClPP) (1), Eu(2)[Pc(β-OC(4)H(9))(8)](2)(TClPP) (2), and Eu(2)[Pc(β-OC(8)H(17))(8)](2)(TClPP) (3), have been designed, synthesized, and fabricated into nanotubes using nanoporous anodized aluminium oxide (AAO) membrane as the template. In particular, the effects of peripheral-substituents at the two phthalocyanine ligands in the triple-decker molecule on the molecular stacking relative to the alumina surface and the molecular packing mode in the nanotubes were clarified on the basis of the scanning electron microscopy (SEM), spectroscopic, and X-ray diffraction results. High-resolution TEM (HRTEM) images, in combination with the electronic absorption and XRD results, indicate that the discotic molecules of 1 without peripheral substituent on the phthalocyanine ligands form columnar structures on the alumina surface with homeotropic molecular stacking depending on the intermolecular π-π interactions in a head-to-tail manner. In good contrast, introduction of eight long octyloxy substituents at the peripheral-positions of the phthalocyanine ligands of 3 induces an increase in the interaction of the triple-decker molecules with the alumina surface, resulting in the formation of nanotubes with discotic molecules of 3 parallel stacking relative to the alumina surface depending on the intermolecular π-π interactions in a face-to-face manner. Most interestingly, introduction of eight shorter length butyloxy substituents at the peripheral-positions of the phthalocyanine ligands of 2 leads to the formation of nanotubes with discotic molecules of 2 parallel stacking relative to the alumina surface but depending on the intermolecular π-π interactions in a head-to-tail manner. X-Ray diffraction (XRD) data confirm the above-mentioned results.  相似文献   

4.
Two novel sandwich-type mixed (phthalocyaninato)(porphyrinato) rare earth double-decker complexes with decreased molecular symmetry of Cs M(Pc)[D(NHC(8)H(17))(2)PP] [M = Eu, Lu; Pc = unsubstituted phthalocyaninate; D(NHC(8)H(17))(2)PP = 5,10-di(phenyl)-15,20-di(4-octylamino-phenyl)porphyrinate] (1, 2) have been designed, prepared, and characterized. The single crystal and molecular structure of the Eu analogue has been determined by X-ray diffraction analysis, revealing the head-to-tail supramolecular chains formed from closely bound double-decker molecules depending on the N-H-N hydrogen bonds between one octyl-substituted amidocyanogen group attached at the p-position of meso-attached phenyl group of the porphyrin ligand in the mixed ring double-decker molecule and one aza-nitrogen atom of the phthalocyanine ring in the neighboring double-decker molecule in a zigzag form. Their self-assembled nano-structures have been investigated by transmission electronic microscopy (TEM) and scanning electronic microscopy (SEM). Intermolecular H-N-H hydrogen bonding interaction leads to the formation of nano-structures with fusiform morphology with 220-250 nm average width and about 10 μm length for 1 and 300 nm width and 3-5 μm length for 2, respectively, revealing the effect of molecular size in the direction perpendicular to the tetrapyrrole ring on the dimensions of self-assembled nano-structures.  相似文献   

5.
The vibrational (IR and Raman) spectra of neutral and reduced mixed (phthalocyaninato)(porphyrinato) yttrium(III) double-decker complexes Y(Pc)(Por) and [Y(Pc)(Por)] [the simplified models of mixed (phthalocyaninato)(porphyrinato) rare earth(III) complexes] are studied using density functional theory (DFT) calculations. The simulated IR and Raman spectra of Y(Pc)(Por) are compared with the experimental IR spectrum of Tb(Pc)(TClPP) and Raman spectrum of Y(Pc)(TClPP), respectively, and many bands can acceptably fit in spite of the different species. On the basis of comparison with the simulated spectra of PbPc and PbPor together with the assistance of normal coordinate analysis, the calculated frequencies in their IR and Raman spectra are identified in terms of the vibrational mode of different ligand for the first time. The calculated frequency at 1048 cm−1 in the IR spectrum of [Y(Pc)(Por)] with contribution from both Pc and Por vibrational modes is the characteristic IR vibrational mode of the reduced double-decker, while the characteristic IR vibrational mode of Y(Pc)(Por) attributed from the vibration of phthalocyanine monoanion radical Pc appears at 1257 cm−1. In line with our previous experimental findings that the Raman spectra of M(Pc)(TPP) and M(Pc)(TClPP) are dominated by the Pc vibrational modes, theoretical calculations indicate that most of the Raman vibrational modes contributed from Por ring are covered up by those of Pc ring and thus are hard to be recognized in the Raman spectra of [Y(Pc)(Por)] and Y(Pc)(Por) due to their much weaker intensity in comparison with that of Pc ligand. Comparison in the IR and Raman spectra between [Y(Pc)(Por)] and Y(Pc)(Por) also suggests the localization of hole on the Pc ring in the neutral double-decker Y(Pc)(Por). The present work, representing the first detailed DFT study on the vibrational spectra of mixed (phthalocyaninato)(porphyrinato) rare earth(III) double-decker complexes, is useful in helping to understand the vibrational spectroscopic properties of this series of mixed tetrapyrrole ring complexes.  相似文献   

6.
Intramolecular dynamics of meso-aryl substituents of porphyrin deck in the triple-decker lanthanide (porphyrinato)(phthalocyaninates) of symmetrical type [Br(4)TPP]Ln[(15C5)(4)Pc]Ln[Br(4)TPP] (Ln = La, Nd, Eu; [Br(4)TPP] = tetrakis-5,10,15,20-(4-bromophenyl)-porphyrinato-ligand; [(15C5)(4)Pc] = tetrakis-(15-crown-5)-phthalocyaninato-ligand) are investigated. Attempts to achieve coalescence were not successful, although the trend of exchanging protons to coalescence point was observed in the case of Nd and Eu complexes. The analysis of NOESY cross-peaks between exchanging protons allowed to evaluate the rotation rate constants at different temperatures. The activation barrier of the meso-aryl substituent rotation was calculated with Arrhenius equation based on determined rate constants. The rate constants are lower and activation barriers are higher than ones found previously for related compounds.  相似文献   

7.
With the view to creating novel sandwich-type tetrapyrrole rare earth complexes toward potential applications in material science and chiral catalysis, two new optically active mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes with both (R)- and (S)-enantiomers [M(2)(Pc)(2)(TCBP)] {TCBP = Meso-tetrakis [3,4-(11,12:13,14-di(1',2'-naphtho)-1,4,7,10,15,18-hexaoxacycloeicosa-2,11,13-triene)-phenyl] porphyrinate; M = Eu (1), Y (2)} have been designed and prepared by treating optically active metal free porphyrin (R)-/(S)-H(2)TCBP with M(Pc)(2) in the presence of corresponding M(acac)(3)·nH(2)O (acac = acetylacetonate) in refluxing 1,2,4-trichlorobenzene (TCB). These novel mixed ring rare earth triple-decker compounds were characterized by a wide range of spectroscopic methods including MS, (1)H NMR, IR, electronic absorption, and magnetic circular-dichroism (MCD) spectroscopic measurements in addition to elemental analysis. Perfect mirror image relationship was observed in the Soret and Q absorption regions in the circular-dichroism (CD) spectra of the (R)- and (S)-enantiomers, indicating the optically active nature of these two mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complexes. This result reveals the effective chiral information transfer from the peripheral chiral binaphthyl units to the porphyrin and phthalocyanine chromophores in the triple-decker molecule because of the intense π-π interaction between porphyrin and phthalocyanine rings. In addition, their electrochemical properties have also been investigated by cyclic voltammetry (CV).  相似文献   

8.
The half-sandwich rare-earth complexes [M(III)(acac)(TClPP)] (M = Sm, Eu, Y; TClPP = meso-tetrakis(4-chlorophenyl)porphyrinate; acac = acetylacetonate), generated in situ from [M(acac)3] x n H2O and H2(TClPP), were treated with 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine [H2{Pc(alpha-OC5H11)4}] (Pc = phthalocyaninate) under reflux in n-octanol to yield both the neutral nonprotonated and protonated (phthalocyaninato)(porphyrinato) rare-earth double-decker complexes, [M(III){Pc(alpha-OC5H11)4}(TClPP)] (1-3) and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (4-6), respectively. In contrast, reaction of [Y(III)(acac)(TClPP)] with 1,4,8,11,15,18,22,25-octakis(1-butyloxy)phthalocyanine [H2Pc(alpha-OC4H9)8] gave only the protonated double-decker complex [Y(III)H{Pc(alpha-OC4H9)8}(TClPP)] (7). These observations clearly show the importance of the number and positions of substituents on the phthalocyanine ligand in controlling the nature of the (phthalocyaninato)(porphyrinato) rare-earth double-deckers obtained. In particular, alpha-alkoxylation of the phthalocyanine ligand is found to stabilize the protonated form, a fact supported by molecular-orbital calculations. A combination of mass spectrometry, NMR, UV-visible, near-IR, MCD, and IR spectroscopy, and X-ray diffraction analyses, facilitated the differentiation of the newly prepared neutral nonprotonated and protonated double-decker complexes. The crystal structure of the protonated form has been determined for the first time.  相似文献   

9.
We discovered that poly(vinylphenol) (PVPh) possesses an extremely low surface energy (15.7 mJ/m2) after a simple thermal treatment procedure, even lower than that of poly(tetrafluoroethylene) (22.0 mJ/m2) calculated on the basis of the two-liquid geometric method. Infrared analyses indicate that the intermolecular hydrogen bonding of PVPh decreases by converting the hydroxyl group into a free hydroxyl and increasing intramolecular hydrogen bonding after thermal treatment. PVPh results in a lower surface energy because of the decrease of intermolecular hydrogen bonding between hydroxyl groups. In addition, we also compared surface energies of PVPh-co-PS (polystyrene) copolymers (random and block) and their corresponding blends. Again, these random copolymers possess a lower fraction of intermolecular hydrogen bonding and surface energy than the corresponding block copolymers or blends after similar thermal treatment. This finding provides a unique and easy method to prepare a low-surface-energy material through a simple thermal treatment procedure without using fluoro polymers or silicones.  相似文献   

10.
Hao Z  Wu X  Sun R  Ma C  Zhang X 《Chemphyschem》2012,13(1):267-273
To investigate the effect of sulfur-sulfur and metal-ligand coordination on the molecular structure and morphology of self-assembled nanostructures, metal-free 2,3,9,10,16,17,23,24-octakis(isopropylthio)phthalocyanine H(2)Pc(β-SC(3)H(7))(8) (1) and its copper and lead congeners CuPc(β-SC(3)H(7))(8) (2) and PbPc(β-SC(3)H(7))(8) (3) are synthesized and fabricated into organic nanostructures by a phase-transfer method. The self-assembly properties are investigated by electronic absorption and Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results reveal different molecular packing modes in these aggregates, which in turn result in self-assembled nanostructures with different morphologies ranging from nanobelts for 1 through nanoribbons for 2 to cluster nanoflowers for 3. Intermolecular π-π and sulfur-sulfur interactions between metal-free phthalocyanine 1 lead to the formation of nanobelts. The additional Cu-S coordination bond between the central copper ion of 2 and the sulfur atom of the adjacent molecule of 2 in cooperation with the intermolecular π-π stacking interaction increases the intermolecular interaction, and results in the formation of long nanoribbons for 2. In contrast to compounds 1 and 2, the special molecular structure of complex 3, together with the intermolecular π-π stacking interaction and additional Pb-S coordination bond, induces the formation of Pb-connected pseudo-double-deckers during the self-assembly process, which in turn further self-assemble into cluster nanoflowers. In addition, good semiconducting properties of the nanostructures fabricated from phthalocyanine derivatives 1-3 were also revealed by I-V measurements.  相似文献   

11.
An effective one-step approach for the preparation of (porphyrinato)(phthalocyaninato) early lanthanides of type [Br(4)TPP]Ln[(15C5)(4)Pc]Ln[Br(4)TPP], where Br(4)TPP = 5,10,15,20-tetrakis-(4-bromophenyl)-porphyrinato-ligand, (15C5)(4)Pc = tetrakis-(15-crown-5)-phthalocyaninato-ligand and Ln = La, Pr, Nd or Eu, is developed. The influence of various factors on the reaction pathway and yields of the complexes is investigated in detail. The developed protocol is found to be general for the early lanthanide subgroup. Variation of the synthetic conditions allowed the determination and isolation of possible side-products, namely heteroleptic double-deckers [Br(4)TPP]Ln[(15C5)(4)Pc] (Ln = Nd, Eu) and triple-decker [Br(4)TPP]Nd[(15C5)(4)Pc]Nd[(15C5)(4)Pc]. The peculiarities of the NMR lanthanide-induced shifts (LIS) of resonances of the synthesized triple-decker complexes are precisely investigated. The isostructurality of the synthesized complexes within the series as well as isostructurality with previously synthesized compounds is demonstrated in terms of two-nuclei analysis of LIS.  相似文献   

12.
The location of the hole and acid proton in neutral nonprotonated and protonated mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes, respectively, is studied on the basis of density functional theory (DFT) calculations on the molecular structures, molecular orbitals, atomic charges, and electronic absorption and infrared spectra of the neutral, reduced, and two possible protonated species of a mixed (phthalocyaninato)(porphyrinato) yttrium compound: [(Pc)Y(Por)], [(Pc)Y(Por)]-, [(HPc)Y(Por)], and [(Pc)Y(HPor)], respectively. When the neutral [(Pc)Y(Por)] is reduced to [(Pc)Y(Por)]-, the calculated results on the molecular structure, atomic charge, and electronic absorption and infrared spectra show that the added electron has more influence on the Pc ring than on its Por counterpart, suggesting that the location of the hole is on the Pc ring in neutral [(Pc)Y(Por)]. Nevertheless, comparison of the calculation results on the structure, orbital composition, charge distribution, and electronic absorption and infrared spectra between [(HPc)Y(Por)] and [(Pc)Y(HPor)] leads to the conclusion that the acid proton in the protonated mixed (phthalocyaninato)(porphyrinato) yttrium compound should be localized on the Por ring rather than the Pc ring, despite the localization of the hole on the Pc ring in [(Pc)Y(Por)]. This result is in line with the trend revealed by comparative studies of the X-ray single-crystal molecular structures between [MIII{Pc(alpha-OC5H11)4}(TClPP)] and [M(III)H{Pc(alpha-OC5H11)4}(TClPP)] (H2TClPP=5,10,15,20-tetrakis(4-chlorophenyl)porphyrin; M=Sm, Eu). The present work not only represents the first systemic DFT study on the structures and properties of mixed (phthalocyaninato)(porphyrinato) yttrium double-decker complexes, but more importantly sheds further light on the nature of protonated bis(tetrapyrrole) rare-earth complexes.  相似文献   

13.
The electronic absorption spectroscopic data for two series of 60 unsubstituted/substituted bis(phthalocyaninato) and mixed [tetrakis(4-chlorophenyl)porphyrinato](phthalocyaninato) rare earth complexes M(Pc)2, M(Pc)2 and M(TClPP)(Pc) [M = Y, La…Lu except Pm; Pc = dianion of 2,3,9,10,16,17,23,24-octakis(4-methoxyphenoxy)phthalocyanine [Pc(MeOPhO)8], dianion of 3(4),12(13),21(22),30(31)-tetra(tert-butyl)phthalocyanine (TBPc) and TClPP = tetra(4-chloro)phenylporphyrin] have been measured in CHCl3. In this paper, the influence of the symmetry of macrocycle rare earth molecules, the effects of ionic radius of the rare earth metal and the influence of substituent species (tert-butyl and 4-methoxyphenoxy groups) onto the peripheral benzene rings on the electronic absorption characteristics of sandwich-type compounds have also been tentatively studied in detail.  相似文献   

14.
Carboxylate and salicylic OH coordinate bonding as well as intramolecular and intermolecular hydrogen bonding of bis-3,5-diisopropylsalicylatozinc(II), [ZnII(3,5-DIPS)2], with Lewis bases were studied to determine mechanisms accounting for antioxidant reactivity of ZnII(3,5-DIPS)2. Apparent thermodynamic parameters: K eq, ΔS 0, ΔH 0, and ΔG 0 were determined for these equilibria with bonding of two molecules of dimethyl sulfoxide-d6 (DMSO) or ethyl acetate-d8 (EA) to the ZnII using NMR and FTIR. We conclude that addition of two equivalents of DMSO or EA to non-polar solutions of ZnII(3,5-DIPS)2 results in bonding of DMSO or EA to ZnII via sulfoxide or ester carbonyl oxygen atoms with ternary complex formation, leading to weakening of carboxylate and salicylic OH coordinate bonding to ZnII and strengthening intramolecular hydrogen bonding between protons of salicylic OH groups and carboxylate oxygens. Subsequent addition of two or three additional equivalents of DMSO or EA leads to intermolecular hydrogen bonding between protons of salicylic OH groups.  相似文献   

15.
Ab initio and density functional theory (DFT) calculations on some model systems are presented to assess the extent to which intermolecular hydrogen bonding can affect the planarity of amide groups. Formamide and urea are examined as archetypes of planar and non-planar amides, respectively. DFT optimisations suggest that appropriately disposed hydrogen-bond donor or acceptor molecules can induce non-planarity in formamide, with OCNH dihedral angles deviating by up to ca. 20° from planarity. Ab initio energy calculations demonstrate that the energy required to deform an amide molecule from the preferred geometry of the isolated molecule is more than compensated by the stabilisation due to hydrogen bonding. Similarly, the NH(2) group in urea can be made effectively planar by the presence of appropriately positioned hydrogen-bond acceptors, whereas hydrogen-bond donors increase the non-planarity of the NH(2) group. Small clusters (a dimer, two trimers and a pentamer) extracted from the crystal structure of urea indicate that the crystal field acts to force planarity of the urea molecule; however, the interaction with nearest neighbours alone is insufficient to induce the molecule to become completely planar, and longer-range effects are required. Finally, the potential for intermolecular hydrogen bonding to induce non-planarity in a model of a peptide is explored. Inter alia, the insights obtained in the present work on the extent to which the geometry of amide groups may be deformed under the influence of intermolecular hydrogen bonding provide structural guidelines that can assist the interpretation of the geometries of such groups in structure determination from powder X-ray diffraction data.  相似文献   

16.
Vitamin C is known as an essential dietary supplement and implicated in diverse biological processes. We present here a theoretical study on the nature of hydrogen bonding of vitamin C in biological systems. For this reason, the complexes of vitamin C (VC) with neutral and zwitterionic L-alanine (as the simplest chiral amino acid) were studied at the MP2/6-311++G(d,p) level of theory. In the gas phase, neutral L-alanine leads to more stable complexes than the zwitterionic forms while the reverse is true in the aqueous phase. The complexes are formed via two hydrogen bond interactions, which result in a ring-like hydrogen-bonded networks. The nature of H-bonds was characterized in terms of natural bond orbital and quantum theory of atoms in molecule analyses (QTAIM). The H-bonds in the studied complexes were electrostatic in nature; however, in the case of shorter and directional H-bonds and ionic interactions, contributions of covalent character were also non-negligible. Natural energy decomposition analysis of hydrogen-bonded complexes reveals that the charge transfer and electrical components are the largest contributors for the interaction energies of complexes. Natural resonance theory analysis suggests higher resonance weight for charge-assisted interactions of vitamin C---alanine (zwitterionic) complexes, where the total interaction energy is considerably higher than that of neutral alanine.  相似文献   

17.
A series of methyl 3,5-bis(3,4,5-trialkyloxybenzoylamino)-4-methylbenzoates (alkyl = CH3(CH2)n?1, n = 8, 10, 12, 14 and 16) exhibits mesomorphic behavior at temperatures between 120 and 240 °C. The liquid crystalline properties have been characterized using differential scanning calorimetry, optical polarization microscopy and X-ray diffraction. The molecules stack in columns which pack under hexagonal symmetry. Variable temperature infra-red absorption measurements provide evidence of intermolecular hydrogen bonding between the amide entities in both the crystalline and liquid-crystalline phases.  相似文献   

18.
A series of four amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with different lengths of hydrophobic alkoxy substituents on one outer phthalocyanine ligand [Pc(15C5)4]Eu[Pc(15C5)4]Eu[Pc(OCnH(2n+1))8] (n = 4, 6, 10,12) (1, 2, 4, and 5) was designed and prepared. Their film forming and organic field effect transistor properties have been systematically studied in comparison with analogous [Pc(15C5)4]Eu[Pc(15C5)4]Eu[Pc(OC8H17)8] (3). Experimental results showed that all these typical amphiphilic sandwich triple-decker molecules have been fabricated into highly ordered films by the Langmuir-Blodgett (LB) technique, which displays carrier mobility in the direction parallel to the aromatic phthalocyanine rings in the range of 0.0032-0.60 cm2 V(-1) s(-1) depending on the length of the hydrophobic alkoxy substituents. This is rationalized on the basis of comparative morphology analysis results of the LB films by the atomic force microscopy technique.  相似文献   

19.
Magnesocene adducts of alkylamines were prepared and characterized. Treatment of 3-amino-2,4-dimethylpentane, isopropylamine, tert-butylamine, benzylamine, or N-isopropylbenzylamine with magnesocene at ambient temperature in toluene afforded the amine adducts Cp2Mg(NH2CH(CH(CH3)2)2) (91%), Cp2Mg(NH2iPr) (80%), Cp2Mg(NH2tBu) (67%), Cp2Mg(NH2CH2Ph) (80%), and Cp2Mg(NH(CH(CH3)2)(CH2C6H5)) (91%). These adducts are stable at ambient temperature, and Cp2Mg(NH2CH(CH(CH3)2)2) can be sublimed at 60 degrees C/0.05 Torr without any evidence for reversion to magnesocene. The solid-state structure of Cp2Mg(NH2CH(CH(CH3)2)2) contains eta5- and eta2-cyclopentadienyl ligands, and the hydrogen atoms on the coordinated amine nitrogen atom participate in intramolecular and intermolecular hydrogen bonding to the eta2-cyclopentadienyl ligand. The observed hydrogen bonding is relevant to the path by which cyclopentadiene is eliminated from metal cyclopentadienyl CVD source compounds during film growth employing acidic element hydrides as co-reactants.  相似文献   

20.
Regular square, wirelike, quadrate, and rodlike nanocrystal arrays of Cd2+, Hg2+, or Ag+ metal-cation-mediated sandwich-type mixed (phthalocyaninato) [5,10,15,20-tetrakis(4-pyridyl)poprhyrinato] cerium(III) double-decker complex Ce(Pc)(TPyP) have been successfully prepared at the water-chloroform interface. The nanocrystal growth processes were monitored by transmission electron microscopy (TEM), which reveals that different morphologies of nanocrystals have been fabricated from double-decker molecules connected by different kinds of metal cations, forming coordination polymers. These nanoscaled coordination polymers were characterized by FT-IR spectra and energy-dispersive X-ray spectra (EDS). EDS results clearly revealed the elements of the nanocrystals and the FT-IR spectra give evidence for the coordination interaction between the double-decker molecules and metal cations. The UV-vis absorption spectrum indicates the formation of J-aggregates of the double-decker molecules in the nanocrystals formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号