共查询到13条相似文献,搜索用时 93 毫秒
1.
应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究 总被引:5,自引:0,他引:5
应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究。采集浙江省文城地区农田土壤样品近红外光谱数据,土壤样品数为394个。为简化模型,采用遗传算法结合连续投影算法挑选出18个特征波长建模,应用偏最小二乘回归建立有机质预测模型,建模集的决定系数为0.81,均方根预测误差为0.22, 剩余预测偏差为2.31,预测集的决定系数为0.83,均方根预测误差为0.20,剩余预测偏差为2.45。研究发现,遗传算法结合连续投影算法在简化模型同时,模型的预测评价指标同采用全谱波长建模并没有明显降低。因此,遗传算法结合连续投影算法挑选的特征波长可以应用于近红外光谱检测土壤有机质含量。 相似文献
2.
近红外光谱技术结合RCA和SPA方法检测土壤总氮研究 总被引:1,自引:0,他引:1
基于近红外光谱技术结合连续投影算法和回归系数分析对检测土壤总氮含量进行研究。采集农田土壤样本近红外光谱数据,土壤样本数量共394个。由于原始光谱数据量大,在500~2 500 nm光谱波长范围基础上,为简化模型,在原始光谱基础上采用连续投影算法和回归系数分析提取特征变量,以两种变量选择方法提取的特征变量作为输入,分别采用偏最小二乘回归(PLS)、 多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)建模方法建立总氮预测模型,共建立了9个预测模型,最优预测集的决定系数为0.81,剩余预测偏差RPD为2.26。研究表明,基于连续投影算法和回归系数分析选择的特征波长可以应用于近红外光谱检测土壤总氮含量,同时可以大大简化模型,适合开发便携式土壤养分检测仪。 相似文献
3.
连续投影算法及其在小麦近红外光谱波长选择中的应用 总被引:7,自引:0,他引:7
采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多变量校正技术构成SPA-PLS方法,用于谷物小麦近红外光谱波长优化选择及其与水分含量的定量分析。结果表明:在经SPA算法后,光谱波数可削减97.72%,后继的定量校正模型结构得到显著简化,模型的稳健性也大大增强;同时,被选取的波长物理意义明确,模型的解释能力增强,而模型的预测性能也与GA-PLS方法相当。 相似文献
4.
目前,近红外光谱(NIRS)可以实现种子活力的快速、无损检测,但区分的活力等级一般少于3级且精度不高。建立种子活力多等级、高精度的NIRS检测模型,解决活力等级增加与预测模型精度之间的矛盾是现阶段近红外种子活力检测的主要任务。以玉米种子为研究对象,采用人工老化的方法获得5种活力等级的种子样本并采集对应的光谱数据建立反向神经网络(BP)预测模型。为了提高模型的精度和稳健性,提出一种耦合平均影响值-连续投影特征波长提取算法(MIVopt-SPAsa)。该算法针对连续投影算法(SPA)耗时过长的问题,采用平均影响值算法(MIV)对其预降维。MIV方法实现了对波长影响值的排序,但缺乏选取波长影响阈值的指标,因此引入相对距离比对MIV算法进行优化(MIVopt),实现特征波长范围的有效分割。针对SPA提取特征变量数目确定的问题,设定了特征波长数目范围并在此范围内优中选优,实现了自适应的SPA(SPAsa)特征提取。使用耦合MIVopt-SPAsa算法对具有1 845个波长的玉米种子近红外全谱数据进行特征提取,... 相似文献
5.
不同类型土壤总氮的近红外光谱技术测定研究 总被引:7,自引:0,他引:7
该研究从江苏、河南、山西、河北、吉林采集部分表层土壤,并在山西河北两地采集表下层土壤,经前处理后通过近红外光谱仪扫描得到光谱图,用传统开氏法测得其总氮,运用OPUS软件建立了土壤总氮和光谱图之间的数学模型,并初步探讨了模型的应用范围。结果表明:各地区表层土壤建立的模型良好,交叉检验的均方根误差均在0.01%以内,相关系数平均在0.85以上,并且该模型能够很好地定量分析同一采样范围内表层和表下层的土壤总氮,定量分析的均方根误差基本在0.01%以内,相关系数在0.80左右;可能受土壤类型的影响,该模型在地区之间的运用具有一定的局限性;从各地区随机取出部分数据作为一个新的集合建立的综合模型良好,其交叉检验的均方根误差和相关系数分别为0.010 2%和0.985 6,并且该模型能很好地预测各地区的土壤总氮。 相似文献
6.
基于抽取和连续投影算法的可见近红外光谱变量筛选 总被引:1,自引:0,他引:1
大多数短波CCD硅检测器为2 048或3 648像元,相邻波长间隔小,预处理算法对其适用性差.本文在600.09~980.47 nm光谱范围内,采用等间隔抽取方法重构光谱矩阵.经不同光谱预处理后,分别采用遗传算法(GA)和连续投影算法(SPA),筛选偏最小二乘法(PLS)建模变量.采用留一法交叉验证评价模型的预测能力,... 相似文献
7.
智能优化算法应用于近红外光谱波长选择的比较研究 总被引:3,自引:0,他引:3
近红外光谱(NIRS)是一种间接分析技术,其应用需建立相应的校正模型。为了提高模型的解释能力、预测准确度和建模效率,需要对NIRS进行波长选择,优选最小化冗余信息。智能优化算法是以生物的行为方式或物质的运动形态为背景,经过数学抽象建立算法模型,通过迭代计算来求解组合最优化问题,其核心策略是以某种目标函数为标准,基于多元校正建模并以逐步逼近的方法筛选出有效的波长点。选用蚁群优化(ACO)、遗传优化(GA)、粒子群优化(PSO)、随机青蛙(RF)和模拟退火(SA)5种智能优化算法对烟叶总氮和烟碱近红外光谱数据进行特征波长选择,结合偏最小二乘(PLS)算法,构建了多个烟叶总氮和烟碱的校正模型,结果显示:所选用两个数据集的总氮最优模型分别为PSO-PLS和GA-PLS模型,烟碱最优模型分别为GA-PLS和SA-PLS模型,五种智能优化算法所建模型预测性能并非全部优于全谱PLS模型,但是通过智能优化算法进行波长选择后建立的PLS模型大大简化,模型的预测精度、可解释性和稳定性均有所提高。同时也对优选波长进行了解释和分析,烟叶总氮特征波长优选组合为4 587~4 878和6 700~7 200 cm-1;烟叶烟碱特征波长优选组合为4 500~4 700和5 800~6 000 cm-1,优选出来的特征波长具有实际物理意义。 相似文献
8.
基于便携式短波近红外光谱技术检测了土壤总氮含量。采集浙江省文城地区农田土壤样本243个,将土壤样本分为三组,一组未经过粉碎、过筛等处理,一组做过2 mm筛处理,一组过0.5 mm筛过处理,采用usb4000便携式光谱获取土壤光谱数据,结合(savitzky-golay, SG)平滑算法,波长压缩算法和小波变换对原始数据进行预处理,然后采用竞争性自适应重加权、随机青蛙和连续投影算法进行特征波长选择。基于全光谱建立了偏最小二乘回归和基于特征波长建立了极限学习机和LS-SVM模型。结果表明过筛处理后的样本模型结果优于未过筛的样本模型结果,过0.5 mm筛处理的土壤样本模型预测结果略优于过2 mm筛处理的土壤样本模型预测结果,最优预测集的决定系数为0.63,预测均方根误差为0.007 9,剩余预测偏差为1.58。表明便携式仪器检测土壤总氮含量,经过过筛处理的土壤样品检测结果优于未过筛土壤样品检测结果,建议土壤样品检测总氮含量时需经过过筛处理,这样得到的结果较为理想,在此基础上采用性能较好的光谱仪器采集数据,以减小原始光谱噪声。 相似文献
9.
基于遗传算法的近红外光谱定性分析特征波长提取方法研究 总被引:1,自引:0,他引:1
近红外光谱分析技术虽在多领域获得广泛应用,但应用时仍以实验室仪器为主,目前光谱仪存在体积大、功耗高、价格贵等问题,有能力购买与使用此类仪器的主要是高校、科研院所、大型企业等,常用的基于傅里叶变换或光栅原理的光谱仪价格通常高达几十万元,超出中小企业、普通百姓的经济承受能力,因此近红外光谱仪的进一步推广应用仍有难度.降低仪... 相似文献
10.
提出了一种以样品光谱类间相关系数之和最小为准则进行光谱波长逐步筛选的方法(stepwise selection basing on minimum sum of correlation coefficients, SMCC),以类间距离与类内距离和的比值最大化(符合分析者主观预期目标)作为定性分析中特征波长筛选效果的评价依据,并使用红塔集团提供的2012年17种不同类型工业分级烟叶作为试验样品,以验证筛选方法的有效性。研究表明,采用CO1分级烟叶光谱作为参照类别,筛选出10个特征波长点:采用特征波长计算得到的类内欧氏距离的平均值为采用全部波长计算得到的平均值的1.69倍,采用特征波长计算得到的类间欧氏距离的平均值为采用全部波长计算得到的平均值的3.70倍,采用特征波长计算得到的类间欧氏距离与类内欧氏距离和的比值的平均值为采用全部波长计算得到的平均值的2.21倍。特征波长的类间与类内欧氏距离和的比值增大,说明筛选出来的特征波长能更加有效的表达不同类间的远近关系以及同一类内的离散度,SMCC算法是一种有效的、可应用于近红外光谱定性分析中的特征波长筛选方法。 相似文献
11.
用遗传算法快速提取近红外光谱特征区域和特征波长 总被引:9,自引:0,他引:9
提出了一种遗传区间偏最小二乘法(GA-iPLS),并用该方法快速提取苹果糖度近红外光谱的特征区域,在此基础上采用遗传偏最小二乘法(GA-PLS)提取苹果糖度近红外光谱的特征波长,进行苹果糖度预测。结果表明,整个光谱等分为40个子区间,遗传区间偏最小二乘法能快速寻找出5个特征子区间(第4,6,8,11,18号);在5个特征子区间的基础上用遗传偏最小二乘法继续优化,从中提取44个特征波长。建立在5个特征子区间和44个特征波长上的偏最小二乘法模型精度均优于全光谱偏最小二乘法模型,对预测集的预测相关系数提高了近10%;且模型得到了很大的简化,用于建模的主因子数减少了7个。这些结果表明,用这两种方法不但可以建立简洁、数据运算量少的模型,还可以快速地提取近红外光谱的特征区域和特征波长。 相似文献
12.
本文提出了一种利用三维景物的二维视角投影图像合成计算全息图,并重构出彩色再现三维影像的方法.该方法基于利用视角投影图像获取景物的三维傅里叶频谱的理论,采用电荷耦合器件记录三维景物在白光照明条件下横、纵两正交方向的一系列视角投影图像,并利用这些视角投影图像合成计算全息图,从而重构出三维再现像.通过采用在频谱面上的容余采样方法,提高了图像频谱信息的利用率,通过实验论证,证明了该方法的可行性.利用该方法使得视角投影图像的记录过程更加简单,节省了采样时间,提高了程序运行速度|能够在利用同等数量的视角投影图像的条件下,提高合成全息图的质量,使得重构的彩色再现三维影像更加清晰. 相似文献