首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Substitutional N-doping of single-walled carbon nanotubes is a common strategy to enhance their electrocatalytic properties in the oxygen-reduction reaction (ORR). Here, we explore the encapsulation of SWNTs within N-rich macrocycles as an alternative strategy to display electroactive sites on the surface of SWNTs. We design and synthesize four types of mechanically interlocked derivatives of SWNTs (MINTs) by combining two types of macrocycles and two types of SWNT samples. Comprehensive electrochemical characterization of these MINTs and their reference SWNTs allows us to establish structure–activity relationships. First, we show that all MINT samples are superior electrocatalysts compared to pristine SWNTs, which serves as general validation of our strategy. Secondly, we show that macrocycles displaying both N atoms and carbonyl groups perform better than those with N atoms only. Finally, we demonstrate that a tighter fit between macrocycles and SWNTs results in enhanced catalytic activity and stability, most likely due to a more effective charge-transfer between the SWNTs and the macrocycles. These results, focusing on the ORR as a testbed, show the possibility of understanding electrocatalytic performance of SWNTs at the molecular level and thus enable the design of more active and more stable catalysts in the future.

We present the encapsulation of SWNTs within N-rich macrocycles to enhance electrocatalytic activity towards the oxygen-reduction reaction.  相似文献   

2.
Selective covalent surface modification of single‐walled carbon nanotubes (SWNTs) is of great importance to various carbon nanotube‐based applications as it might offer an alternative method for enriching metallic and semiconducting nanotubes. Herein, we report on the surface modification of SWNTs through 1,3‐dipolar cycloaddition of 3‐phenyl‐phthalazinium‐1‐olate, which is a stable and reactive azomethine imine. For this reaction, microwave heating was found to be more efficient than conventional and solvent‐free heating. The sensitivity of cycloaddition to the molecular structure of SWNTs was probed using resonance Raman spectroscopy with three different laser excitations. Based on the obtained results, azomethine imine addition to the surface of nanotubes is selective for metallic and large‐diameter semiconducting SWNTs. Thermogravimetric analysis coupled with mass spectrometry showed that fragments released at high temperatures corresponded to the phenylphthalazine group, thus confirming the covalent surface functionalization. Modified SWNTs were further characterized by X‐ray photoelectron and UV/Vis‐NIR spectroscopies.  相似文献   

3.
Syntheses of chiral 6,15‐dihydronaphtho[2,3‐c]pentaphene derivatives of opposite configurations are reported. Starting from anthracene, the strategy involves two key steps: a Diels–Alder reaction on a prochiral dianthraquinone, and an enantiomeric resolution using (?)‐menthol. The final molecules exhibit very strong optical activity, as shown by their circular dichroism spectra, and are examples of chiral facial amphiphiles. Their adsorption at the surface of single‐walled carbon nanotubes (SWNTs) has also been studied, and has been found to occur preferentially on 0.8–1.0 nm diameter nanotubes among the population of a high‐pressure CO conversion (HiPco) SWNT sample (0.8–1.2 nm). The synthesised facial amphiphiles act as nano‐tweezers for the diameter‐selective solubilisation of SWNTs in water. The expected optical activities of the SWNT samples solubilised by each of the chiral amphiphiles have been studied by circular dichroism spectroscopy, but the results are not yet conclusive.  相似文献   

4.
In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π‐gelator ( MC‐OPV ) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10?4 m , MC‐OPV did not exhibit a CD signal; however, the addition of 0–0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High‐resolution TEM analysis and solid‐state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical‐cable formation has not been reported previously.  相似文献   

5.
Devices with varying concentrations of single‐walled carbon nanotubes (SWNTs) dispersed in three derivatives of poly(p‐phenylene vinylene) are prepared, and their electroluminescent properties evaluated. Increasing the concentration of SWNTs improves the electrical conductivity of the nanocomposites. However, an undesired increase in the electroluminescence (EL) turn‐on voltage is observed for the hybrids, possibly due to photoluminescence quenching of excitons by the SWNTs. At relatively low concentrations of SWNTs, there is an increase in the EL lifetime; in contrast, at relatively high concentrations of SWNTs, due to photoluminescence quenching by the nanotubes, significant reduction in brightness and faster degradation of the EL performance of the devices is observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
The reactions of single-walled carbon nanotubes (SWNTs) with succinic or glutaric acid acyl peroxides in o-dichlorobenzene at 80-90 degrees C resulted in the addition of 2-carboxyethyl or 3-carboxypropyl groups, respectively, to the sidewalls of the SWNT. These acid-functionalized SWNTs were converted to acid chlorides by derivatization with SOCl(2) and then to amides with terminal diamines such as ethylenediamine, 4,4'-methylenebis(cyclohexylamine), and diethyltoluenediamine. The acid-functionalized SWNTs and the amide derivatives were characterized by a set of materials characterization methods including attenuated total reflectance (ATR) FTIR, Raman and solid state (13)C NMR spectroscopy, transmission electron microscopy (TEM), and thermal gravimetry-mass spectrometry (TG-MS). The degree of SWNT sidewall functionalization with the acid-terminated groups was estimated as 1 in 24 carbons on the basis of TG-MS data. In comparison with the pristine SWNTs, the acid-functionalized SWNTs show an improved solubility in polar solvents, for example, alcohols and water, which enables their processing for incorporation into polymer composite structures as well as for a variety of biomedical applications.  相似文献   

7.
《Chemphyschem》2003,4(12):1283-1289
Fluorination of single‐walled carbon nanotubes by reaction with elemental fluorine at elevated temperatures provides fluorinated single‐walled carbon nanotubes (F‐SWNT), which have the highest degree of functionalization (up to F/C=1/2) of any derivatized carbon‐nanotube material reported to date. Also, F‐SWNTs have received more scrutiny than any other functionalized carbon nanotubes. This Minireview covers experimental and computational investigations of F‐SWNTs with a focus on the nature and the strength of the C–F linkage.  相似文献   

8.
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.  相似文献   

9.
Genomic DNA in bacteria exists in a condensed state, which exhibits different biochemical and biophysical properties from a dilute solution. DNA was concentrated on streptavidin‐covered single‐walled carbon nanotubes (Strep ? SWNTs) through biotin–streptavidin interactions. We reasoned that confining DNA within a defined space through mechanical constraints, rather than by manipulating buffer conditions, would more closely resemble physiological conditions. By ensuring a high streptavidin loading on SWNTs of about 1 streptavidin tetramer per 4 nm of SWNT, we were able to achieve dense DNA binding. DNA is bound to Strep ? SWNTs at a tunable density and up to as high as 0.5 mg mL?1 in solution and 29 mg mL?1 on a 2D surface. This platform allows us to observe the aggregation behavior of DNA at high concentrations and the counteracting effects of HU protein (a histone‐like protein from Escherichia coli strain U93) on the DNA aggregates. This provides an in vitro model for studying DNA–DNA and DNA–protein interactions at a high DNA concentration.  相似文献   

10.
Uniform dispersion and strong interfacial interaction are two critical prerequisites for application of single‐walled carbon nanotubes (SWNTs) in polymer composites. To endow the composites with multifunctional feature, no damage on the chemical/electronic structure of SWNTs is also usually required. With these ends in view, two epoxide‐containing pyrene derivatives (EpPys) were designed, synthesized, and used as reactive noncovalent dispersants for developing multifunctional epoxy/SWNT composites. One having longer chain length between epoxide group and pyrene moiety, that is, EpPy‐16, shows higher dispersing efficiency and provides the nanotube dispersion with better stability, thus picking up for subsequent studies. Systematic characterization on SWNT/EpPy‐16 hybrid demonstrates that 13.2 wt % of EpPy‐16 is adsorbed on the SWNT surface through strong π‐stacking interaction, and intrinsic electronic structure of SWNTs is basically reserved. The solution‐based process adopted here preserves the good SWNT dispersing state in dispersion into the composites. Simultaneously, enhanced interfacial interaction is also realized by using EpPy‐16, which interacts noncovalently with SWNT but connects covalently to epoxy network. As a result, the composites acquire 37 and 22% increments in tensile strength and Young's modulus, respectively, relative to that of neat resin. A low‐electrical percolation threshold of 0.1 wt % SWNTs and improved thermal properties were also observed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Carbon nanotubes (CNTs) are anticipated as an important new material for use in nanotechnology applications because of their excellent mechanical and electrical properties. For their development, a highly stable dispersion of debundled CNTs is indispensable. Herein we present a new method to enhance dispersibility of single‐walled carbon nanotubes (SWNTs) with proteins using alcohols as co‐solvents. Addition of fluoroalcohols in solution increased the SWNT dispersion by more than one order of magnitude without protein denaturation. Enhancement of SWNT dispersion through addition of alcohols was attributed to the decreased hydrophobic interaction among SWNTs. This novel approach enables us to produce biofunctional CNTs such as one‐dimensional nanobiosensors and drug carriers that can penetrate cells.  相似文献   

12.
Fluorescence of semiconducting single‐walled carbon nanotubes (SWNTs) normally exhibits diameter‐dependent oxidative quenching behaviour. This behaviour can be changed substantially to become an almost diameter‐independent quenching phenomenon in the presence of electron‐withdrawing nitroaromatic compounds, including o‐nitrotoluene, 2,4‐dinitrotoluene, and nitrobenzene. This change is observed for SWNTs suspended either in sodium dodecyl sulfate or in Nafion upon titration with hydrogen peroxide. Benzene, toluene, phenol, and nitromethane do not show such change. These findings suggest the possibility of forming an electron donor–acceptor complex between SWNTs and nitroaromatic compounds, resulting in leveling the redox potential of different SWNT species. The observation appears to provide a new method for modifying the electrochemical potentials of SWNTs through donor–acceptor complex formation.  相似文献   

13.
Hydrophobic end‐modulated l ‐phenylalanine‐containing triethylene glycol monomethyl ether tagged neutral hydrogelators ( 1 – 4 ) are developed. Investigations determine the gelators’ structure‐dependent inclusion of carbon nanomaterials (CNMs) in the self‐assembled fibrillar network (SAFIN). The gelators ( 1 , 3 , and 4 ) can immobilize water and aqueous buffer (pH 3–7) with a minimum gelator concentration of 10–15 mg mL?1. The hydrophobic parts of the gelators are varied from a long chain (C‐16) to an extended aromatic pyrenyl moiety, and their abilities to integrate 1 D and 2 D allotropes of carbon (i.e., single‐walled carbon nanotubes (SWNTs) and graphene oxide (GO), respectively) within the gel are investigated. Gelator 1 , containing a long alkyl chain (C‐16), can include SWNTs, whereas the pyrene‐containing 4 can include both SWNTs and GO. Gelator 3 fails to incorporate SWNTs or GO owing to its slow rate of gelation and possibly a mismatch between the aggregated structure and CNMs. The involvement of various forces in self‐aggregated gelation and physicochemical changes occurring through CNM inclusion are examined by spectroscopic and microscopic techniques. The distinctive pattern of self‐assembly of gelators 1 and 4 through J‐ and H‐type aggregation might facilitate the structure‐specific CNM inclusion. Inclusion of SWNTs/GO within the hydrogel matrix results in a reinforcement in mechanical stiffness of the composites compared with that of the native hydrogels.  相似文献   

14.
Single-wall carbon nanotubes(SWNTs) modified gold electrodes were prepared by using two different methods.The electrochemical behavior of cytochrome c on the modified gold electrodes was investigated.The first kind of SWNT-modified electrode (noted as SWNT/Au electrode)was prepared by the adsorption of carboxylterminated SWNTs from DMF dispersion on the gold electrode.The oxidatively processed SWNT tips were covalently modified by coupling with amines (AET) to form amide linkage.Via Au-S chemical bonding,the self-assembled monolayer of thiol-unctionalized nanotubes on gold surface was fabricated so as to prepare the others SWNT-modified electrode (noted as SWNT/AET/Au electrode).It was shown from cyclic voltammetry cxperiments that cytochrome c exhibited direct electrochemical responses on the both electrodes, but only the current of controlled diffusion existed on the SWNT/Au electrode while both the currents of controlled diffusion and adsorption of cytochrome c occurred on the SWNT/AET/Au electrode.Photoelastic Modulation Infared Reflection Absorpthion Spectroscopy (PEM-IRRAS) and Quartz Crystal Microbalance (QCM) were employed to verify the adsorption of SWNTs on the gold electrodes.The results proved that SWNTs could enhance the direct electron transfer proecss between the electrodes and redox proteins.  相似文献   

15.
A BODIPY‐based bis(3‐pyridyl) ligand undergoes self‐assembly upon coordination to tetravalent palladium(II) cations to form a Pd6L12 metallosupramolecular assembly with an unprecedented structural motif that resembles a rotaxane‐like cage‐in‐ring arrangement. In this assembly the ligand adopts two different conformations—a C‐shaped one to form a Pd2L4 cage which is located in the center of a Pd4L8 ring consisting of ligands in a W‐shaped conformation. This assembly is not mechanically interlocked in the sense of catenation but it is stabilized only by attractive π‐stacking between the peripheral BODIPY chromophores and the ligands’ skeleton as well as attractive van der Waals interactions between the long alkoxy chains. As a result, the co‐arrangement of the two components leads to a very efficient space filling. The overall structure can be described as a rotaxane‐like assembly with a metallosupramolecular cage forming the axle in a metallosupramolecular ring. This unique structural motif could be characterized via ESI mass spectrometry, NMR spectroscopy, and X‐ray crystallography.  相似文献   

16.
meso‐Tritolylcorrole‐functionalized single‐walled carbon nanotubes (TTC‐SWNT) donor‐acceptor (D–A) heterojunction nanocomposite film was fabricated on a polycarbonate membrane through filtration and non‐covalent functionalization, providing an excellent sensing platform with low‐cost, high flexibility and good gas accessibility. The TTC‐SWNTs nanocomposite displays a fast and sensitive response to nitrogen dioxide with a limit of detection of 10 ppb (S/N=3). The sensing response was significantly amplified compared to the unmodified one, which was ascribed to a D–A heterojunction at the interface between electron donor TTC and electron acceptor SWNTs. This study provides a simple route to fabricate low‐cost and highly sensitive donor‐acceptor nanocomposite‐based gas sensors.  相似文献   

17.
Crystallization of oligomers was applied for the preparation of single‐walled carbon nanotubes (SWNTs)/poly(p‐oxybenzoyl) (POB) crystals using SWNTs as a nucleating agent. Polymerization conditions were investigated to induce the crystallization of POB oligomers through SWNTs. SWNTs/POB plate‐like or lozenge‐shaped crystals were successfully prepared by direct polymerization of p‐hydroxybenzoic acid (HBA) in a mixed solvent of DMF/Py with TsCl in the presence of functionalized SWNTs. The size of the plate‐like crystals were ~200 nm to 3 μm. The crystals consisted of some layers, ~3 nm thick plates. Model reactions showed that esterification reactions proceed between functionalized SWNTs and HBA monomers in the polymerization system. The obtained crystals exhibited unique morphology and high crystallinity, producing a novel SWNT/POB hybrid. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1265–1277, 2008  相似文献   

18.
In this work, we synthesized electroactive cubic Prussian blue (PB) modified single‐walled carbon nanotubes (SWNTs) nanocomposites using the mixture solution of ferric‐(III) chloride and potassium ferricyanide under ambient conditions. The successful fabrication of the PB‐SWNTs nanocomposites was confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV‐vis absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV). PB nanocrystallites are observed to be finely attached on the SWNTs sidewalls in which the SWNTs not only act as a carrier of PB nanocrystallites but also as Fe(III)‐reducer. The electrochemical properties of PB‐SWNTs nanocomposites were also investigated. Using the electrodeposition technique, a thin film of PB‐SWNTs/chitosan nanocomposites was prepared onto glassy carbon electrode (GCE) for the construction of a H2O2 sensor. PB‐SWNTs/chitosan nanocomposites film shows enhanced electrocatalytic activity towards the reduction of H2O2 and the amperometric responses show a linear dependence on the concentration of H2O2 in a range of 0.5–27.5 mM and a low detection limit of 10 nM at the signal‐to‐noise ratio of 3. The time required to reach the 95% steady state response was less than 2 s. CV studies demonstrate that the modified electrode has outstanding stability. In addition, a glucose biosensor is further developed through the simple one‐step electrodeposition method. The observed wide concentration range, high stability and high reproducibility of the PB‐SWNTs/chitosan nanocomposites film make them promising for the reliable and durable detection of H2O2 and glucose.  相似文献   

19.
Summary: Soluble carbon nanotubes were prepared by treating SWNTs with sec‐butyllithium and subsequently using the generated carbanions as the initiator to graft PtBA and PtBA‐b‐PMMA onto the surface of SWNTs. The anionic polymerization initiated by SWNTs‐bearing carbanions not only provides a powerful strategy for functionalizing SWNTs but also gives us knowledge of the sidewall chemistry of SWNTs. The results indicate that a carbanion born on SWNTs behaves like an anionic initiator with high steric hindrance.

Anionic polymerization of (meth)acrylate monomer.  相似文献   


20.
A grapevine nanostructure based on single-walled carbon nanotubes (SWNTs) covalently functionalized with [60]fullerene (C60) has been synthesized and characterized in detail. Investigations into the ball-on-tube carbon nanostructure by ESR spectroscopy indicate a tendency for ground-state electron transfer from the SWNT to the C60 moieties. The cyclic-voltammetric response of the nanostructure film exhibits reversible multiple-step electrochemical reactions of the dispersed C60, which are strikingly similar to those of the C60 derivatives in solution, but with consistent negative shifts in the redox potential. This results from the covalent linkage of C60 to the surfaces of the SWNTs in the form of monomers and manifests the electronic interaction between the C60 and SWNT moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号