首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hollow structures of rutile TiO2, and especially with non‐spherical shape, have rarely been reported. Herein, high‐quality rutile TiO2 submicroboxes have been synthesized by a facile templating method using Fe2O3 submicrocubes as removable templates. Compared to other rutile TiO2 nanomaterials, the as‐prepared rutile TiO2 submicroboxes manifest superior lithium storage properties in terms of high specific capacity, long‐term cycling stability, and excellent rate capability.  相似文献   

2.
Density functional theory (DFT) calculations performed at ONIOM DFT B3LYP/6‐31G**‐MD/UFF level are employed to study molecular and dissociative water adsorption on rutile TiO2 (110) surface represented by partially relaxed Ti25O37 ONIOM cluster. DFT calculations indicate that dissociative water adsorption is not favorable because of high activation barrier (23.2 kcal/mol). The adsorption energy and vibration frequency of both molecularly and dissociatively adsorbed water molecule on rutile TiO2 (110) surface compare well with the values reported in the literature. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The high‐pressure hydrogenation of commercially available anatase or anatase/rutile TiO2 powder can create a photocatalyst for H2 evolution that is highly effective and stable without the need for any additional co‐catalyst. This activation effect cannot be observed for rutile; however, for anatase/rutile mixtures, a strong synergistic effect can be found (similar to results commonly observed for noble‐metal‐decorated TiO2). EPR and PL measurements indicated the intrinsic co‐catalytic activation of anatase TiO2 to be due to specific defect centers formed during hydrogenation. These active centers can be observed specifically for high‐pressure hydrogenation; other common reduction treatments do not result in this effect.  相似文献   

4.
Unique ordered TiO2 superstructures with tunable morphology and crystalline phase were successfully prepared by the use of different counterions. Dumbbell‐shaped rutile TiO2 and nanorod‐like rutile mesocrystals constructed from ultrathin nanowires, and quasi‐octahedral anatase TiO2 mesocrystals built from tiny nanoparticle subunits were achieved. Interestingly, the obtained anatase mesocrystals have a fine microporous structure and a large surface area. The influence of the counterions in the reaction system is discussed and possible mechanisms responsible for the formation of the unique ordered TiO2 superstructures with different morphologies and crystalline phases are also proposed based on a series of experimental results. The obtained TiO2 superstructures were used as anode materials in lithium ion batteries, and exhibited higher capacity and improved rate performance; this is attributed to the intrinsic characteristics of the mesoscopic TiO2 superstructures, which have a single‐crystal‐like and porous nature.  相似文献   

5.
Highly ordered mesoporous niobium‐doped TiO2 with a single‐crystalline framework was prepared by using silica colloidal crystals with ca. 30 nm in diameter as templates. The preparation of colloidal crystals composed of uniform silica nanoparticles is a key to obtain highly ordered mesoporous Nb‐doped TiO2. The XPS measurements of Nb‐doped TiO2 showed the presence of Nb5+ and correspondingly Ti3+. With the increase in the amount of doped Nb, the crystalline phase of the product was converted from rutile into anatase, and the lattice spacings of both rutile and anatase phases increased. Surprisingly, the increase in the amount of Nb led to the formation of plate‐like TiO2 with dimpled surfaces on one side, which was directly replicated from the surfaces of the colloidal silica crystals.  相似文献   

6.
La‐TiO2 nanofibers are prepared by a sol‐gel assisted electrospinning method. The structure and morphology of La‐TiO2 nanofibers are characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). XRD analysis shows that the weight percentage of anatase and rutile in the 1.5 mol% La‐TiO2 nanofibers calcined at 600 °C is about 8:2, which is similar to P‐25. The XRD data of La‐TiO2 nanofibers with different La content shows that La3+ dopant has a great inhibition on TiO2 phase transformation. The photocatalytic activity of the as‐prepared La‐TiO2 nanofibers is evaluated by photocatalytic decolorization of Methylene Blue (MB) aqueous solution. The results show that the 1.5 mol% La‐TiO2 nanofibers calcined at 600 °C exhibit high photocatalytic activity, indicating that 600 °C and 1.5 mol% are the appropriate calcination temperature and optimal molar ratio of La to Ti, respectively.  相似文献   

7.
The solid, hollow, and tube‐in‐tube porous nanofiber structures of TiO2 are synthesized successfully by a simple non‐coaxial electrospinning method without using a complicated coaxial jet head, combined with adjusting the concentration of the TiO2 precursor and the pinhole diameter of the jet head and by final calcination. The formation mechanisms of different structured TiO2 fibers are discussed in detail. This method is facile and effective, and easy to scale up. Furthermore, it is a versatile method for constructing tube‐in‐tube fibers of other metal oxides such as ZrO2, SiO2, SnO2, and In2O3. The photocatalytic activity of tubular TiO2 nanofibers for the degradation of 2‐chlorophenol and 2,4‐dichlorophenol under UV or visible‐light irradiation is better than the one of commercial available TiO2 powder, rutile, and anatase TiO2 fibers.  相似文献   

8.
Interfacial charge collection efficiency has demonstrated significant effects on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Herein, crystalline phase‐dependent charge collection is investigated by using rutile and anatase TiO2 electron transport layer (ETL) to fabricate PSCs. The results show that rutile TiO2 ETL enhances the extraction and transportation of electrons to FTO and reduces the recombination, thanks to its better conductivity and improved interface with the CH3NH3PbI3 (MAPbI3) layer. Moreover, this may be also attributed to the fact that rutile TiO2 has better match with perovskite grains, and less trap density. As a result, comparing with anatase TiO2 ETL, MAPbI3 PSCs with rutile TiO2 ETL delivers significantly enhanced performance with a champion PCE of 20.9 % and a large open circuit voltage (VOC) of 1.17 V.  相似文献   

9.
One‐dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye‐sensitized solar cells (DSSCs) due to their superior electron‐transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three‐dimensional (3D) rutile‐nanorod‐based network structure directly grown on fluorine‐doped tin oxide (FTO) substrates was developed by using a facile two‐step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head‐caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light‐harvesting efficiency was increased due to an enhanced light‐scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open‐circuit voltage decay (OCVD) analyses confirmed that the electron‐recombiantion rate was reduced on formation of the nanorod‐based 3D network for fast electron transport. As a resut, a light‐to‐electricity conversion efficiency of 6.31 % was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2.  相似文献   

10.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

11.
Synthesis of titanium oxide film by plasma oxidization of the metallic films is investigated. Argon/oxygen gas mixture in the pressure range 30 × 10?2 mbar is used for plasma processing at a frequency of 250 kHz. The plasma‐oxidized films are annealed in a tube furnace in argon atmosphere to establish crystalline‐phase formation. X‐ray diffraction and Raman spectroscopic results manifest peaks corresponding to rutile TiO2. Ultraviolet‐Visible (UV‐Vis) spectroscopic analysis confirms the bandgap of rutile TiO2, and photoluminescence spectra exhibit peaks due to oxygen defects. Homogeneity across the film's thickness and the nature of the film substrate interface is studied by depth profiling acquired using secondary ion mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Ordered mesoporous thin films of composites of rutile TiO2 nanocrystals with amorphous Ta2O5 are fabricated by evaporation‐induced self‐assembly followed by subsequent heat treatment beyond 780 °C. Incorporation of selected amounts of Ta2O5 (20 mol %) in the mesoporous TiO2 film, together with the unique mesoporous structure itself, increased the onset of crystallization temperature which is high enough to ensure the crystallization of amorphous titania to rutile. The ordered mesoporous structure benefits from a block‐copolymer template, which stabilizes the mesostructure of the amorphous mixed oxides before crystallization. The surface and in‐depth composition analysis by X‐ray photoelectron spectroscopy suggests a homogeneous intermixing of the two oxides in the thin film. A detailed X‐ray absorption fine structure measurement on the composite film containing 20 mol % Ta2O5 and heated to 800 °C confirms the amorphous nature of the Ta2O5 phase. Photocatalytic activity evaluation suggests that the rutile nanocrystals in the synthesized ordered mesoporous thin film possess good ability to assist the photodegradation of rhodamine B in water under illumination by UV light.  相似文献   

13.
The M1 form of vanadium dioxide, which exhibits a reversible insulator–metal transition above room temperature, has been incorporated into nanoscale heterostructures through solution‐phase epitaxial growth on the tips of rutile TiO2 nanorods. Four distinct classes of VO2‐TiO2‐VO2 nanorod heterostructures are accessible by modulating the growth conditions. Each type of VO2‐TiO2‐VO2 nanostructure has a different insulator–metal transition temperature that depends on the VO2 domain sizes and the TiO2‐VO2 interfacial strain characteristics.  相似文献   

14.
A nanoporous polymeric crystalline TiO2 composite (TiO2/PDVB‐MA) has been successfully synthesized through an in situ synthesis method using divinylbenzene (DVB), methacrylic acid (MA) and tetrabutyl titanate. The experimental results showed that TiO2 nanoparticles composed of the mixture phases of anatase and rutile were homogeneously dispersed into the PDVB‐MA support. The TiO2/PDVB‐MA composite was used as photocatalyst for Rhodamine B (RhB), bisphenol A and 2,4,6‐trichlorophenol degradation under visible light irradiation. More interestingly, the excellent photocatalytic performance of the composite was observed with regard to RhB and bisphenol A, which might be ascribed to the synergistic effect between TiO2 nanoparticles and PDVB‐MA. Moreover, TiO2/PDVB‐MA composite could be recycled at least four times in the removal of RhB, suggesting that it is a promising photocatalyst to catalyze the degradation of organic pollutants under visible light irradiation.  相似文献   

15.
二氧化钛多相催化是一种极具前途的环境污染深度净化技术。 本文以钛酸四丁酯和四氯化锡为原料,无水乙醇为溶剂,采用溶胶-凝胶法制备了掺杂二氧化锡的二氧化钛薄膜和复合氧化物粉体。通过测量薄膜的吸收光谱推算光学能隙,结果发现掺杂样品的光学能隙比纯二氧化钛样品有所变小。随着热处理温度的提高,掺杂和纯二氧化钛样品的光学能隙都略微降低。X-射线衍射分析表明,复合氧化物粉体的热处理温度对样品的晶体结构和光催化性能有重要影响。以掺杂二氧化锡5 % 摩尔比的样品与纯二氧化钛对照,500 ℃以下热处理样品以锐钛矿结构为主,600 ℃热处理样品为锐钛矿与金红石相共存,并显示了较好的光催化性能。透射电子显微镜观察显示,同样600 ℃热处理,掺杂样品要比纯二氧化钛具有更小的颗粒尺寸。在700 ℃热处理的样品中,掺杂样品只存在金红石相而纯二氧化钛样品中仍存有锐钛矿相。用阿伦尼乌斯经验关系式推测的晶粒生长的活化能,纯二氧化钛47.486 kJ.mol, 掺杂5 % 摩尔比的复合氧化物样品33.103 kJ.mol。以亚甲基蓝为降解物质,考察了掺杂量和热处理温度对样品的光催化性能。  相似文献   

16.
以四氯化钛为钛源,针铁矿(α-FeOOH)为载体,采用水解沉淀法制备了金红石相二氧化钛(Ti2O)与α-FeOOH的复合光催化材料,并采用X射线衍射、扫描电子显微镜、透射电子显微镜、X射线能量散射谱和X射线光电子能谱对样品进行了表征.结果表明,低温下,金红石相Ti2O包覆于α-FeOOH表面,并形成复合结构;较高温下,铁离子进入金红石相Ti2O晶格,并形成铁掺杂金红石相Ti2O纳米管;中温下,样品兼有复合和掺杂两者特征.在室温下以甲基橙为降解对象,采用钨灯+氘灯(波长200~800nm)为光源,对样品的光催化活性进行了测试.结果表明,样品对甲基橙的光催化降解效果良好;与纯α-FeOOH和金红石相Ti2O相比,不同结构样品的光催化活性均有所提高,其中,复合兼掺杂型样品的光催化活性最高.由此可见,与α-FeOOH复合和铁掺杂是提高Ti2O光催化活性的有效途径.  相似文献   

17.
The generation of oxidants on illuminated photocatalysts and their participation in subsequent reactions are the main basis of the widely investigated photocatalytic processes for environmental remediation and selective oxidation. Here, the generation and the subsequent diffusion of .OH from the illuminated TiO2 surface to the solution bulk were directly observed using a single‐molecule detection method and this molecular phenomenon could explain the different macroscopic behavior of anatase and rutile in photocatalysis. The mobile .OH is generated on anatase but not on rutile. Therefore, the photocatalytic oxidation on rutile is limited to adsorbed substrates whereas that on anatase is more facile and versatile owing to the presence of mobile .OH. The ability of anatase to generate mobile .OH is proposed as a previously unrecognized key factor that explains the common observations that anatase has higher activity than rutile for many photooxidative reactions.  相似文献   

18.
采用溶胶-凝胶法在钛酸丁酯水解过程引入硼酸、硝酸铈,制备具有光催化活性的硼铈共掺杂纳米二氧化钛(TiO2),经XRD、TEM、FT-IR、UV-Vis-DRS表征晶体结构,在日光灯照射下,光催化降解三氯杀螨醇、高氟氯氰菊酯、氟戊菊酯农药。结果表明:硼铈共掺杂的TiO2只有锐钛矿型,而纯的或掺铈的TiO2有含有锐钛矿型、金红石相和少量板钛矿型,UV-Vis-DRS测定结果表明硼铈共掺杂的TiO2禁带宽度变小,硼铈共掺杂的TiO2在可见光区吸光度高于掺杂铈和不掺杂的TiO2,在420nm~850nm有强的吸收;在同样光照下对三氯杀螨醇、高氟氯氰菊酯、氟戊菊酯的降解试验证明硼铈共掺杂纳米TiO2的光催化活性高于不掺杂或只掺杂铈的TiO2。  相似文献   

19.
Light‐driven water splitting was achieved using a dye‐sensitized mesoporous oxide film and the oxidation of bromide (Br?) to bromine (Br2) or tribromide (Br3?). The chemical oxidant (Br2 or Br3?) is formed during illumination at the photoanode and used as a sacrificial oxidant to drive a water oxidation catalyst (WOC), here demonstrated using [Ru(bda)(pic)2], ( 1 ; pic=picoline, bda=2,2′‐bipyridine‐6,6′‐dicarboxylate). The photochemical oxidation of bromide produces a chemical oxidant with a potential of 1.09 V vs. NHE for the Br2/Br? couple or 1.05 V vs. NHE for the Br3?/Br? couple, which is sufficient to drive water oxidation at 1 (RuV/IV≈1.0 V vs. NHE at pH 5.6). At pH 5.6, using a 0.2 m acetate buffer containing 40 mm LiBr and the [Ru(4,4′‐PO3H2‐bpy)(bpy)2]2+ ( RuP 2+, bpy=2,2′‐bipyridine) chromophore dye on a SnO2/TiO2 core–shell electrode resulted in a photocurrent density of around 1.2 mA cm?2 under approximately 1 Sun illumination and a Faradaic efficiency upon addition of 1 of 77 % for oxygen evolution.  相似文献   

20.
采用新的化学溶液法,通过不同体积的钛酸四异丙酯的2-乙二醇单乙醚溶液与一定浓度的H2O2水溶液直接反应并对生成的钛过氧化配合物进行焙烧,制备了一系列TiO2光催化剂. 表征发现,所得TiO2样品为金红石和锐钛矿的纳米复合晶体,改变2-乙二醇单乙醚的体积可实现金红石相比例在0~96%广范围的调变.与商业二氧化钛P-25相比,所得的TiO2紫外-可见光吸收谱出现明显红移,间隙能降低, 在可见光照射下,该样品对亚甲基蓝有良好的降解活性. 当2-乙二醇单乙醚的添加量为5 ml时,所得样品体相中金红石相比例接近50%,其光催化活性和吸附性能最好,可分别是P-25的3倍和5倍. 拉曼光谱结合X射线衍射等表征结果表明,该样品的表面仅含少量的金红石相. TiO2纳米复合晶表面晶相的组成和分布对其光催化降解亚甲基蓝的活性及其吸附能力有直接的影响. 另外,TiO2纳米复合晶的缺陷浓度也是增强其光吸收能力,提高其可见光光催化活性的原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号