首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An enantiospecific palladium‐catalyzed decarboxylative coupling of acyclic β,γ‐alkynoic acids with various aryl iodides to chiral tetrasubstituted allenes is described. The coupling reaction comprises a decarboxylative γ‐palladation of α,α‐disubstituted carboxylic acids to provide the tetrasubstituted allenes with complete point‐to‐axial chirality transfer in excellent yields.  相似文献   

2.
3.
4.
5.
The rhodium‐catalyzed asymmetric N‐selective coupling of pyrazole derivatives with terminal allenes gives access to enantioenriched secondary and tertiary allylic pyrazoles, which can be employed for the synthesis of medicinally important targets. The reaction tolerates a large variety of functional groups and labelling experiments gave insights into the reaction mechanism. This new methodology was further applied in a highly efficient synthesis of JAK 1/2 inhibitor (R)‐ruxolitinib.  相似文献   

6.
The asymmetric synthesis of fluorinated isoindolinones has been achieved by a palladium‐catalyzed aminocarbonylation reaction of the corresponding α‐fluoroalkyl o‐iodobenzylamines. A base‐mediated anti β‐hydride elimination process was suggested to explain the partial erosion of the optical purity observed in some cases. This mechanistic rationale enabled the minimization of this partial racemization by fine‐tuning the pKa of the base.  相似文献   

7.
We report herein the first examples of a palladium‐catalyzed enantioselective Cacchi reaction for the synthesis of indoles bearing a chiral C2‐aryl axis. In the presence of a catalytic amount of Pd(OAc)2 and (R,R)‐QuinoxP* ligand, reaction of N‐aryl(alkyl)sulfonyl‐2‐alkynylanilides with arylboronic acids under oxygen atmosphere afforded enantioenriched 2,3‐disubstituted indoles in high yields and enantioselectivity. The indole ring is constructed de novo in this process and a complexation‐induced chirality transfer is proposed to account for the observed enantioselectivity.  相似文献   

8.
《化学:亚洲杂志》2017,12(24):3119-3122
A palladium‐catalyzed asymmetric redox‐relay Heck reaction of 4H ‐chromenes and arylboronic acids has been successfully developed. The reaction proceeded in moderate to good yields with good to high enantioselectivities. The resulting product is an advanced intermediate of bio‐active compound BW683C.  相似文献   

9.
10.
An olefin‐directed palladium‐catalyzed regio‐ and stereoselective hydroboration of allenes has been developed to afford fully substituted alkenylboron compounds. The reaction showed a broad substrate scope: a number of functionalized allenes, including 2,3‐dienoate, 3,4‐dienoate, 3,4‐dienol, 1,2‐allenylphosphonate, and alkyl‐substituted allenes, could be used in this olefin‐directed allene hydroboration. The olefin unit was proven to be an indispensable element for this transformation.  相似文献   

11.
A combination of a palladium–NHC catalyst and potassium hexamethyldisilazide enables the amination of aryl sulfides with anilines to afford a wide variety of diarylamines. The reaction conditions are versatile enough for the reaction of even bulky ortho‐substituted aryl sulfides. This amination can be applied to the modular synthesis of N‐aryl carbazoles from the corresponding ortho‐bromothioanisoles. As aryl sulfoxides undergo extended Pummerer reactions to afford ortho‐substituted aryl sulfides, the Pummerer products are thus useful substrates for the amination to culminate in efficient syntheses of a 2‐anilinobenzothiophene and an indole as proof‐of‐principle of the utility of the extended Pummerer reaction/amination cascade.  相似文献   

12.
13.
A protocol for the asymmetric synthesis of highly substituted chiral allenes with control of point and axial chirality has been developed. A palladium‐catalyzed [3+2] cycloaddition using readily available racemic allenes gives access to densely functionalized chiral allenes with excellent yields and functional group tolerance. The catalytic asymmetric protocol utilizes a broad range of allenyl TMM (trimethylenemethane) donors to form cyclopentanes, pyrrolidines, and spirocycles with very good control of regio‐, enantio‐, and diastereoselectivity. The chiral allene moiety is shown to be a valuable functional group for rapid elaboration towards complex targets.  相似文献   

14.
An olefin‐directed palladium‐catalyzed oxidative regio‐ and stereoselective arylation of allenes to afford 1,3,6‐trienes has been established. A number of functionalized allenes, including 2,3‐ and 3,4‐dienoates and 3,4‐dienol derivatives, have been investigated and found to undergo the olefin‐directed allene arylation. The olefin moiety has been proven to be a crucial element for the arylating transformation.  相似文献   

15.
Taking the air! A PdII‐catalyzed intramolecular hydroamination of allenes coupled to alcohol oxidation has been developed. This reaction is performed by using a nitrogen‐based ligand under aerobic conditions, under which the molecular oxygen is used as the terminal oxidant for the reoxidation of Pd0 species to complete the catalytic cycle.

  相似文献   


16.
17.
Asymmetric benzylation of prochiral azlactone nucleophiles enables the catalytic introduction of a benzyl group towards the synthesis of α,α‐disubstituted amino acids. Herein, we report an enantioselective palladium‐catalyzed process using chiral bis(diphenylphosphinobenzoyl)diamine (dppba) ligands. Naphthalene‐ and heterocycle‐based methyl carbonates react with a number of azlactones derived from both natural and unnatural amino acids. Monocyclic benzylic electrophiles, for which the barrier to ionization is higher, must employ a phosphate leaving group in order to react. Reaction conditions for electron‐rich and ‐neutral benzylic electrophiles have been developed, and the scope of the reaction has been explored with respect to both reaction partners. The high levels of asymmetric induction, as well as the reactivity pattern of the electrophiles, suggest an η3‐benzyl intermediate that arises through two distinct pathways.  相似文献   

18.
19.
Palladium‐catalyzed asymmetric allylic alkylation of nonstabilized ketone enolates to generate quaternary centers has been achieved in excellent yield and enantioselectivity. Optimized conditions consist of performing the reaction in the presence of two equivalents of LDA as base, one equivalent of trimethytin chloride as a Lewis acid, 1,2‐dimethoxyethane as the solvent, and a catalytic amount of a chiral palladium complex formed from π‐allyl palladium chloride dimer 3 and cyclohexyldiamine derived chiral ligand 4 . Linearly substituted, acyclic 1,3‐dialkyl substituted, and unsubstituted allylic carbonates function well as electrophiles. A variety of α‐tetralones, cyclohexanones, and cyclopentanones can be employed as nucleophiles. The absolute configuration generated is consistent with the current model in which steric factors control stereofacial differentiation. The quaternary substituted products available by this method are versatile substrates for further elaboration.  相似文献   

20.
A cooperative Cu/Pd‐catalyzed enantioselective synthesis of multisubstituted allenes is established. By employing chiral sulfoxide phosphine (SOP)/Cu and PdCl2(dppf) complexes as catalysts, the 1,4‐arylboration of 1,3‐enynes provides an efficient approach to trisubstituted chiral allenes with up to 92 % yield and 97:3 er. Furthermore, by using 2‐substituted 1,3‐enynes as substrates, the tetrasubstituted chiral allenes were successfully generated using this strategy. Finally, theoretical calculations indicate that the transmetallation of the allenylcopper species is the rate‐limiting step of this transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号