首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bioinsipred gold‐catalyzed tandem Diels–Alder/Diels–Alder reaction of an enynal and a 1,3‐diene, forming the highly‐strained benzotricyclo[3.2.1.02,7]octane skeleton, was reported. In contrast, a Diels–Alder/Friedel–Crafts tandem reaction occurred instead when silver salts were used as the catalyst. Although both reactions experienced the similar Diels–Alder reaction of a pyrylium intermediate with a 1,3‐diene, they have different reaction mechanisms. The former proceeded with a stepwise Diels–Alder reaction, while the latter one with a concerted one.  相似文献   

2.
We report the combination of transition‐metal‐catalyzed diversified cycloisomerization of 1,6‐enynes with chiral Lewis acid promoted asymmetric Diels–Alder reaction to realize asymmetric cycloisomerization/Diels–Alder relay reactions of 1,6‐enynes with electron‐deficient alkenes. A broad spectrum of chiral [5,6]‐bicyclic products could be acquired in high yields (up to 99 %) with excellent diastereoselectivy (>19:1 dr) and enantioselectivity (up to 99 % ee).  相似文献   

3.
Structurally diverse spiroheterocycles; spiro[pyrimido[2,1‐b ]benzothiazole‐3,3′‐chromene]‐2′,4′‐dione, spiro[pyrimido[2,1‐b ]benzothiazole‐3,5′‐pyrimidine]‐2′,4′,6′‐trione, and spiro[pyrimido[2,1‐b ]benz‐thiazole‐3,2′‐cyclohexane]‐1′,3′‐dione have been synthesized by an environmentally benign, efficient, and facile one‐pot pseudo‐four component reaction of 2‐aminobenzothiazoles with aromatic aldehydes and cyclic β‐diketones in aqueous medium. The process involves hetero‐Diels–Alder cycloaddition and provides facile access to spiroheterocycles fused with potentially interesting biologically active scaffolds. The configuration of hetero‐Diels–Alder cycloadduct has been ascertained through density functional theory calculations.  相似文献   

4.
A highly regio‐ and stereoselective hetero Diels–Alder cycloaddition of indene with N‐sulfonyl‐1‐aza‐1,3‐butadiene was achieved. Subsequent transformation of the 5H‐indeno [l,2‐b]pyridine via elimination and reduction provides a new route to azafluorenone (e.g., 1‐methyl‐4‐azafluorene) for the synthesis of onychnine.  相似文献   

5.
The Diels–Alder reaction between 2,7‐cyclooctadienone and cyclopentadiene goes to completion to produce a bis adduct and mono adduct under InCl3 conditions. 2,6‐Cycloheptadienone undergoes sequential Diels–Alder reactions in the presence of AlCl3 with cyclohexadiene and cyclopentadiene to produce the bis adduct. The bis adducts were oxidatively cleaved to produce the [5.8.5] and [5.7.6] tricyclic systems.  相似文献   

6.
《Tetrahedron: Asymmetry》2001,12(8):1179-1183
The Diels–Alder reaction of (S)-(+)-4-ethenyl[2.2]paracyclophane with 1,4-benzoquinone, N-phenylmaleimide and 3-nitrocyclohexen-1-one has been investigated under atmospheric and high pressure conditions. The synthesis of five optically active [2.2]paracyclophanes containing condensed polycyclic aromatic subunits is described. A structural analysis of the reaction products by 1H and 13C NMR spectroscopy is also presented.  相似文献   

7.
The Diels–Alder cycloaddition reaction has become established as a fundamental approach for the preparation of complex natural products; however, successful application of the intermolecular Diels–Alder cycloaddition reaction to the synthesis of particularly congested scaffolds remains surprisingly problematic. Inspired by the terpenoid spiroketal natural product leonuketal, a challenging telescoped reaction sequence has been realized to access the core [2.2.2]‐bicyclic lactone ring system and its [3.2.1] isomer. Our four‐step, protecting‐group‐free process required detailed investigation to circumvent the problems of adduct fragmentation and intermediate instability. Successful solution of these practical issues, along with unambiguous structural determination of the target structures, provide useful insights that will facilitate future applications of the Diels–Alder cycloaddition reaction to challenging, highly congested molecular scaffolds and ongoing synthetic efforts towards this natural product.  相似文献   

8.
The reaction of N‐phthaloyl‐L ‐leucine acid chloride (1) with isoeugenol (2) was carried out in chloroform, and novel optically active isoeugenol ester derivative 3 as a chiral monomer was obtained in high yield. Compound 3 was characterized by 1H‐NMR, IR, and mass and elemental analysis and then was used for the preparation of model compound 5 and polymerization reactions. 4‐Phenyl‐1,2,4‐triazoline‐3,5‐dione, PhTD (4), was allowed to react with compound 3. The reaction is very fast and gives only one diastereomer of 5 via Diels–Alder and ene pathways in quantitative yield. In order to explain this diastereoselectivity, a nonconcerted two‐step mechanism involving benzylic cation (BC) and aziridinium (AI) have been proposed for the Diels–Alder and ene reactions, respectively. The polymerization reactions of novel monomer 3 with bis(triazolinedione)s [bis(p‐3,5‐dioxo‐1,2,4‐triazolin‐4‐ylphenyl)methane (8) and 1,6‐bis(3,5‐dioxo‐1,2,4‐triazolin‐4‐yl)hexane] (9)] were performed in N,N‐dimethylacetamide (DMAc) at room temperature. The reactions are exothermic, fast, and gave novel optically active polymers 10 and 11 via repetitive Diels–Alder–ene polyaddition reactions. These polymers have inherent viscosities in a range about 0.18–0.22 dL/g. Some physical properties and structural characterizations of these new polymers have been studied and are reported. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1211–1219, 1999  相似文献   

9.
The ability to mimic the activity of natural enzymes using supramolecular constructs (artificial enzymes) is a vibrant scientific research field. Herein, we demonstrate that cucurbit[7]uril (CB[7]) can catalyse Diels–Alder reactions for a number of substituted and unreactive N ‐allyl‐2‐furfurylamines under biomimetic conditions, without the need for protecting groups, yielding powerful synthons in previously unreported mild conditions. CB[7] rearranges the substrate in a highly reactive conformation and shields it from the aqueous environment, thereby mimicking the mode of action of a natural Diels–Alderase. These findings can be directly applied to the phenomenon of product inhibition observed in natural Diels–Alderase enzymes, and pave the way toward the development of novel, supramolecular‐based green catalysts.  相似文献   

10.
Rolf Huisgen explored the Diels–Alder reactions of 1,3,5‐cycloheptatriene (CHT) and cyclooctatetraene (COT) with the dienophiles maleic anhydride and 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione (PTAD) to determine the kinetics and mechanisms of various electrocyclizations and Diels–Alder reactions. These reactions have been examined with density functional theory. Modern computational chemistry has provided information not previously available by experiment. Transition states for all the reactions have been identified, and their Gibbs energies are used to explain the experimental reactivities. Zwitterionic intermediates were not found in the [4+2] cycloadditions of both CHT or COT with PTAD and are thus not involved in these reactions. [2+2+2] cycloadditions, as an alternative path to the Diels–Alder products, are highly disfavored. Rapid double nitrogen inversion was found for the cycloaddition products with PTAD.  相似文献   

11.
Both enantiomers of cis‐ and trans‐fused 3,4,4a,8a‐tetrahydro‐2H,5H‐pyrano[2,3‐b]pyran‐7‐carboxylates have been obtained in high diastereoselectivities and enantioselectivities from the same starting materials using a tandem inverse‐electron‐demand hetero‐Diels–Alder/oxa‐Michael reaction catalyzed by modularly designed organocatalysts (MDOs). Diastereodivergence was achieved in these reactions through the direct control of the stereochemistry of the bridgehead atoms of the fused ring using new MDOs self‐assembled from both enantiomers of proline and cinchona alkaloid thiourea derivatives.  相似文献   

12.
An efficient and short entry to polyfunctionalized linear triquinanes from 2‐methoxyphenols is described by utilizing the following chemistry. The Diels–Alder reactions of masked o‐benzoquinones, derived from 2‐methoxyphenols, with cyclopentadiene afford tricyclo[5.2.2.02,6]undeca‐4,10‐dien‐8‐ones. Photochemical oxa‐di‐π‐methane (ODPM) rearrangements and 1,3‐acyl shifts of the Diels–Alder adducts are investigated. The ODPM‐rearranged products are further converted to linear triquinanes by using an O‐stannyl ketyl fragmentation. Application of this efficient strategy to the total synthesis of (±)‐Δ9(12)‐capnellene was accomplished from 2‐methoxy‐4‐methylphenol in nine steps with 20 % overall yield.  相似文献   

13.
A new TiIII‐mediated reductive epoxide‐opening/ Beckwith–Dowd rearrangement process efficiently assembles the bicyclo[3.2.1]octane framework of highly oxidized grayanane diterpenoids. By incorporation of a Cu(tbs)2‐catalyzed (tbs=Ntert‐butylsalicylaldiminato) intramolecular cyclopropanation, a diastereoselective oxidative dearomatization‐induced Diels–Alder cycloaddition and a MeReO3‐catalyzed Rubottom oxidation, this approach has enabled the first total syntheses of rhodomolleins XX and XXII in 23 and 22 steps, respectively.  相似文献   

14.
Diels–Alder reactions employing 1,2‐azaborine heterocycles as 1,3‐dienes are reported. Carbocyclic compounds with high stereochemical and functional complexity are produced, as exemplified by the straightforward two‐step synthesis of an amino allyl boronic ester bearing four contiguous stereocenters as a single diastereomer. Whereas electron‐deficient dienophiles undergo irreversible Diels–Alder reactions, a reversible Diels–Alder reaction with the less electron‐deficient methyl acrylate is observed. Both the N and the B substituent of the 1,2‐azaborine exert significant influence on the [4+2] cycloaddition reactivity as well as the aromatic character of the heterocycle. The experimentally determined thermodynamic parameters of the reversible Diels–Alder reaction between 1,2‐azaborines and methyl acrylate correlate with aromaticity trends and place 1,2‐azaborines approximately between furan and thiophene on the aromaticity scale.  相似文献   

15.
Hetero‐Diels–Alder reactions of [60]fullerene with α,β‐unsaturated thio‐oxindoles ( 3a , 3b , 3c ), prepared from thio‐oxindole 1 and heteroaromatic aldehydes ( 2a , 2b , 2c ), to generate tetrahydrothiopyrano[2,3‐b ]indole [60]fullerene cycloadducts ( 5a , 5b , 5c ) under thermal or microwave irradiation were described. The yields were improved, and the reaction time was decreased by conducting the reaction under microwave irradiation.  相似文献   

16.
An unexpected double Diels–Alder (DDA) reaction of (E)‐2‐bromo‐4‐aryl‐1,3‐pentadiene was developed and resulted in a series of “butterfly‐like” bicyclo[2.2.2]octene derivatives in moderate to good yields without the need for a metal catalyst. The proposed mechanism involves a [1,5]‐sigmatropic hydrogen migration and HBr elimination. Through this decisive [1,5]‐hydrogen shift step, the electronic properties and steric hindrance of the conjugated diene substrate are completely altered and the DDA reaction of this potential diene synthon is successfully achieved.  相似文献   

17.
The Diels‐Alder cycloadditions of facially dissymmetric maleic anhydride 1 with facially nonequivalent exocyclic 1,3‐butadienes(dimethylidenebicyclo[2.2.2]octene 3 and 2,3,5,6‐tetramethylidenebicyclo[2.2.2]‐octene ( 4 )) were investigated. In each cycloaddition, the reaction occurred via the course in which 1 added exclusively by its syn‐face (same face as the etheno‐bridge) onto either π‐face of the exocyclic 1,3‐butadiene systems to produce only two of the four possible stereoisomeric monocycloadducts ( 8a / 8b and 9a / 9b ). In the Diels‐Alder cycloaddition of 1 with bis‐exocyclic butadiene 4 , however, both monocycloadducts 9a and 9b underwent subsequent cycloaddition with distinctive facial selectivity to produce the Cs‐symmetric bis‐cyclohexanobarrelene 10a as only bis‐cycloadduct.  相似文献   

18.
《合成通讯》2013,43(22):4089-4104
Abstract

Anhydrous zirconium tetrachloride is found to be an efficient catalyst for the Imino Diels–Alder reactions of N‐benzylideneanilines with 3,4‐dihydro‐2H‐pyran and 2,3‐dihydrofuran to afford pyrano and furo [3,2‐c] quinolines in good yields.  相似文献   

19.
A new strategy was devised for the total synthesis of highly oxidized ent‐kauranoids. A highly regio‐ and diastereoselective intermolecular Diels–Alder cycloaddition involving a diene embedded in a substituted bicyclo[4.1.0] skeleton was used to assemble all carbon centers but C17 of the target molecule at an early stage of the synthesis. Subsequent synthetic steps, including redox manipulations, SmI2‐mediated cyclization, and isomerization reactions, afforded the antitumor natural product maoecrystal P.  相似文献   

20.
Among concerted cycloadditions, the Diels–Alder reaction is the grand old classic, which is usually achieved with acid catalysis. In this report, hydroxypyrones, oxa‐, and thiazolones are explored because they provide access to anionic dienes. Their [4+2] cycloaddition with cyclic and acyclic dienophiles, such as maleimides and fumarates, affords bicyclic products with four new stereogenic centers. Bifunctional anion–π catalysts composed of amine bases next to the π surface of naphthalenediimides (NDIs) are shown to selectively stabilize the “open”, fully accessible anionic exo transition state on the π‐acidic aromatic surface. Our results also include reactivities that are hard to access with conventional organocatalysts, such as the exo ‐specific and highly enantioselective Diels–Alder reaction of thiazolones and maleimides with complete suppression of the otherwise dominant Michael addition. With increasing π acidity of the anion–π catalysts, the rates, chemo‐, diastereo‐, and enantioselectivities increase consistently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号