首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A new family of thermally activated delayed fluorescence (TADF) emitters based on U‐shaped D‐A‐D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet‐triplet energy splitting (ΔEST) ranging from 0.02 to 0.20 eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16 % external quantum efficiency (EQE).  相似文献   

2.
The photophysical properties and electrogenerated chemiluminescence (ECL) of three donor–acceptor molecules composed of dicyanobenzene and methyl‐, tert‐butyl‐, and phenyl‐substituted carbazolyl groups, 1,2,3,5‐tetrakis(3,6‐disubstitutedcarbazol‐9‐yl)‐4,6‐dicyanobenzene (4CzIPN‐Me, 4CzIPN‐tBu, and 4CzIPN‐Ph, respectively) are described. These molecules show delayed fluorescence as a result of thermal spin upconversion from the lowest triplet state to the lowest singlet state at room temperature. The three molecules showed yellow to yellowish–red ECL. Remarkably, the ECL efficiencies of 4CzIPN‐tBu in dichloromethane reached almost 40 %. Moreover, stable ECL was emitted from 4CzIPN‐tBu and 4CzIPN‐Ph. In case of 4CzIPN‐Me, the ECL intensity decreased during voltage cycles because of polymerization. Quantum chemical calculations revealed that polymerization was inhibited by the steric hindrance of the bulky tert‐butyl and phenyl groups on the carbazolyl moieties and lowered the spin density on the carbazolyl groups through electron conjugation for 4CzIPN‐Ph.  相似文献   

3.
Electrochemiluminescence (ECL) based on conjugated polymers or oligomers is persistently being pursued owing to its huge application scope ranging from ultra-sensitive bioanalysis to ultra-resolution imaging and spectroscopy. Because of the theoretical limit in radiative exciton generation yield (typically ∼25 %) of those polymers or oligomers, the corresponding ECL efficiency is still limited, which hampers its ECL performance and its related applications. Herein, we report ECL based on a thermally activated delayed fluorescence (TADF) polymer scaffold, which is characteristic of all-exciton harvesting in the ECL process, and thus potentially capable of achieving ∼100 % ECL efficiency. These desired properties of the TADF polymer ECL is attributed to a fast and efficient up-conversion process from non-radiative triplet to radiative singlet states under thermal activation, which is absent in conventional fluorescent polymers/oligomers, such as F8BT. In this study, various ECL modes, including annihilation or co-reactant mode using TPrA or S2O82− as co-reactant, are confirmed for our model TADF polymer ECL system, which was different from fluorescent polymer ECL counterpart. Furthermore, solid-state ECL sensing on L-cysteine (an important marker of disease) is also evaluated by using the model TADF polymer. Ultralow detection limit in combination with high sensitivity and good specificity are achieved for this model system, indicative of a high potential of the TADF polymer scaffold for applications in the broad field of ECL.  相似文献   

4.
Organic luminophores for electrochemiluminescence (ECL), namely polycyclic aromatic hydrocarbons, have been the first molecules investigated since the beginning of ECL studies. Moving from organic solvents to water-based solutions in view of analytical applications, the attention on ECL emitters shifted to soluble inorganic complexes, which prevailed in both fundamental and applied research. However, the investigation of organic molecules has recently revived owing to new synthetic procedures and concepts. Polymeric nanoparticles, surface functionalisation, aggregation-induced emission (AIE), and thermally activated delayed fluorescence (TADF) sparked the research with renovated interest for organic molecules. Here, we introduce and summarise these new concepts behind organic emitters for ECL.  相似文献   

5.
Organic thermally activated delayed fluorescence(TADF)emitters have attracted increasing concerns,owing to their atypical photophysical features that can pave the way to the innovative engineering applications.As cutting-edge type of luminescent molecules,however,most of them only exert a single-wavelength emission from the lowest excited state,according to Kasha’s rule.To develop their potential applications in multicolor luminescence and multi-functional luminescent probes for biological imaging,researchers have begun to turn their attention to design organic TADF molecules with dual-emission characteristics,by employing an additional fluorescence,phosphorescence,or TADF signal within a single-component system.We herein summarized the design principles as well as the luminescence mechanism of organic donor-acceptor TADF compounds with dual-emission characteristics,the superiority of which can cover unique material applications in modern luminescencerelated fields.  相似文献   

6.
A family of organic emitters with a donor–σ–acceptor (D‐σ‐A) motif is presented. Owing to the weakly coupled D‐σ‐A intramolecular charge‐transfer state, a transition from the localized excited triplet state (3LE) and charge‐transfer triplet state (3CT) to the charge‐transfer singlet state (1CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200–400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D‐σ‐A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes.  相似文献   

7.
Thermally activated delayed fluorescent (TADF) materials generally suffer from severe concentration quenching. Efficient non‐doped TADF emitters are generally highly twisted aromatic amine‐based compounds with isolated chemical moieties. Herein we demonstrate that co‐facial packing and strong π–π intermolecular interactions give rise to bright TADF emissions in non‐doped film and crystalline states within the compound 2,4‐diphenyl‐6‐(thianthren‐1‐yl)‐1,3,5‐triazine (oTE‐DRZ). Quantum chemistry simulations indicate that a disperse outer orbital of sulfur atoms, a folded thianthrene plane (for a reduced donor–acceptor distance), and a triazine acceptor with n–π* character, generate a spatially conjugated transition with a small singlet–triplet splitting energy. In company with a highly emissive non‐doped film, the corresponding organic light‐emitting diode achieved a 20.6 % external quantum efficiency, verifying its potential for high‐performance optoelectronic applications. In a crystalline state, it was verified that intra‐ and intermolecular dual TADF assisted by a hidden room‐temperature phosphorescent state. This state could preserve the long‐lived excitons while suppressing non‐radiation, and it could serve as a “spring‐board” for cascade up‐conversion processes. The oTE‐DRZ crystal showed greenish‐blue emission with a very high photoluminescent quantum yield of approximately 87 %, which is the highest among all TADF crystals reported to date.  相似文献   

8.
An organic crystal of 4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (pCBP) exhibits time‐dependent afterglow color from blue to orange over 1 s. Both experimental and computational data confirm that the color evolution results from well‐separated, long‐persistent thermally activated delayed fluorescence (TADF) and room‐temperature phosphorescence (RTP) with different but comparable decay rates. TADF is enabled by a small S1–T1 energy gap of 0.7 kcal mol?1. The good separation of TADF and RTP is due to a 11.8 kcal mol?1 difference in the S0 energies of the S1 and T1 structures, indicating that apart from the excited‐state properties, tuning the ground state is also important for luminescence properties. This afterglow color evolution of pCBP allows its applications in anticounterfeiting and data encryption with high security levels.  相似文献   

9.
Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.5°. The coplanar orientation and appropriate separation of the HOMO and LUMO in this type of molecules favour the formation of charge-transfer excited state with appreciable oscillator strength. Together with a minor but essential heavy atom effect of Au ion, the complexes in doped films exhibit highly efficient (Φ∼0.9) and short-lived (<1 μs) green emissions via TADF. Computational studies on this class of emitters have been performed to decipher the key reverse intersystem crossing (RISC) pathway. In addition to a small energy splitting between the lowest singlet and triplet excited states (ΔEST), the spin-orbit coupling (SOC) effect is found to be larger at a specific torsion angle between the donor and acceptor planes which favours the RISC process the most. This work provides an alternative molecular design to TADF Au(I) carbene emitters for OLED application.  相似文献   

10.
Harvesting non‐emissive spin‐triplet charge‐transfer (CT) excitons of organic semiconductors is fundamentally important for increasing the operation efficiency of future devices. Here we observe thermally activated delayed fluorescence (TADF) in a 1:2 CT cocrystal of trans‐1,2‐diphenylethylene (TSB) and 1,2,4,5‐tetracyanobenzene (TCNB). This cocrystal system is characterized by absorption spectroscopy, variable‐temperature steady‐state and time‐resolved photoluminescence spectroscopy, single‐crystal X‐ray diffraction, and first‐principles calculations. These data reveal that intermolecular CT in cocrystal narrows the singlet–triplet energy gap and therefore facilitates reverse intersystem crossing (RISC) for TADF. These findings open up a new way for the future design and development of novel TADF materials.  相似文献   

11.
Typically, molecules with a twisted donor–acceptor (D‐A) architecture have been exploited for constructing thermally activated delayed fluorescence (TADF) materials. Herein, we report the first example of a thiophene‐based thermally activated delayed fluorescent molecule without a D‐A architecture. Compound 1 (2,5‐bis(2,2‐di(thiophen‐2‐yl)vinyl)thiophene) is conformationally flexible and shows weak fluorescence in the solution state but displays bright TADFin both condensed and solid states. Compound 1 crystallized in two different polymorphs ( 1 a and 1 b ). Interestingly, both polymorphs show distinctly different TADF features. The broad spectral features and the TADF characteristics of 1 have been explored for the time‐dependent multicolor (green, yellow and red) imaging of living cells.  相似文献   

12.
13.
Factors influencing the rate of reverse intersystem crossing (krISC) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third‐generation heavy‐metal‐free organic light‐emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and triplet states and consequently research has focused almost exclusively on the energy gap between these two states. Herein, we use a model spin‐vibronic Hamiltonian to reveal the crucial role of non‐Born‐Oppenheimer effects in determining krISC. We demonstrate that vibronic (nonadiabatic) coupling between the lowest local excitation triplet (3LE) and lowest charge transfer triplet (3CT) opens the possibility for significant second‐order coupling effects and increases krISC by about four orders of magnitude. Crucially, these simulations reveal the dynamical mechanism for highly efficient TADF and opens design routes that go beyond the Born‐Oppenheimer approximation for the future development of high‐performing systems.  相似文献   

14.
Thermally activated delayed fluorescence (TADF) based on through‐space donor and acceptor interactions constitute a recent and promising approach to develop efficient TADF emitters. Novel TADF isomers using a dithia[3.3]‐paracyclophane building block as a versatile 3D platform to promote through‐space interactions are presented. Such a 3D platform allows to bring together the D and A units into close proximity and to probe the effect of their orientation, contact site and distance on their TADF emission properties. This study provides evidence that the dithia[3.3]paracyclophane core is a promising platform to control intramolecular through‐space interactions and obtain an efficient TADF emission with short reverse‐intersystem crossing (RISC) lifetimes. In addition, this study demonstrates that this design can tune the energy levels of the triplet states and leads to an upconversion from 3CT to 3LE that promotes faster and more efficient RISC to the 1CT singlet state.  相似文献   

15.
Here, we designed several waterborne polyurethanes (WPUs) with efficient thermally activated delayed fluorescence (TADF) via serving charge‐transfer (CT) states as a mediate bridge between singlet and triplet states to boost reverse intersystem crossing (RISC). By tuning substituents of diphenyl sulfone (DS), we found that O,O′‐ and S,S′‐substituted DS covalently incorporated in WPUs solely show typical fluorescence emission with lifetimes in the nanosecond range. Interestingly, TADF appears by replacing the substituent with the nitrogen atom, of which lifetimes are up to ≈10 microseconds and ≈1 millisecond in air and vacuum, respectively, even though the energy gap between singlet and triplet states (ΔEST) is still large for generating TADF. To explain this phenomenon, an energy level mode based on CT states and an 3(n‐π*) receiver state was proposed. By the rational modulation of CT states, it is possible to tune the ΔEST to render TADF‐based materials suitable for versatile applications.  相似文献   

16.
Multifunctional emitting materials are scarce and need to be further explored. Now, a newly anthraquinone derivative, 2‐(phenothiazine‐10‐yl)‐anthraquinone (PTZ‐AQ) was designed and synthesized and found to demonstrate polymorphism, multi‐color emission, aggregation‐induced emission (AIE), mechanochromic luminescence (MCL), and thermally activated delayed fluorescence (TADF) in its different solid forms. It is shown for the first time that TADF properties of a compound can be systematically tuned via its aggregation state. The optimized PTZ‐AQ crystal shows a small singlet–triplet energy splitting of 0.01 eV and exhibits red TADF with a photoluminescence quantum yield as high as 0.848. This study shows that the unique multiple functions can be integrated into one single compound through controlling the aggregation states, which provides a new strategy for the investigation and application of multifunctional organic materials.  相似文献   

17.
Multifunctional emitting materials are scarce and need to be further explored. Now, a newly anthraquinone derivative, 2‐(phenothiazine‐10‐yl)‐anthraquinone (PTZ‐AQ) was designed and synthesized and found to demonstrate polymorphism, multi‐color emission, aggregation‐induced emission (AIE), mechanochromic luminescence (MCL), and thermally activated delayed fluorescence (TADF) in its different solid forms. It is shown for the first time that TADF properties of a compound can be systematically tuned via its aggregation state. The optimized PTZ‐AQ crystal shows a small singlet–triplet energy splitting of 0.01 eV and exhibits red TADF with a photoluminescence quantum yield as high as 0.848. This study shows that the unique multiple functions can be integrated into one single compound through controlling the aggregation states, which provides a new strategy for the investigation and application of multifunctional organic materials.  相似文献   

18.
Photon-upconversion in organic molecular systems is one of the promising technologies for future energy harvesting systems because these systems can generate excitons that possess higher energy than excitation energy. The photon-upconversion caused by absorbing ambient heat as additional energy is particularly interesting because it could ideally provide a light-driving cooling system. However, only a few organic molecular systems have been reported. Here, we report the anti-Stokes photoluminescence (ASPL) derived from hot-band absorption in a series of multi-resonance-type thermally-activated delayed fluorescence (MR-TADF) molecules. The MR-TADF molecules exhibited an anti-Stokes shift of approximately 0.1 eV with a high PL quantum yield in the solution state. The anti-Stokes shift corresponded well to the 1–0 vibration transition from the ground state to the excited singlet state, and we further evaluated a correlation between the activation energy for the ASPL intensity and the TADF process. Our demonstration underlines that MR-TADF molecules have become a novel class of ASPL materials for various future applications, such as light-driving cooling systems.  相似文献   

19.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower‐lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light‐emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent‐polarity dependent charge‐transfer emission accompanied by a small, non‐negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET‐S) and thereby the generation of thermally activated delay fluorescence (TADF).  相似文献   

20.
Based on a “TADF + Linker” strategy (TADF=thermally activated delayed fluorescence), demonstrated here is the successful construction of conjugated polymers that allow highly efficient delayed fluorescence. Small molecular TADF blocks are linked together using a methyl‐substituted phenylene linker to form polymers. With the growing number of methyl groups on the phenylene, the energy level of the local excited triplet state (3LEb) from the delocalized polymer backbone gradually increases, and finally surpasses the charge‐transfer triplet state (3CT). As a result, the diminished delayed fluorescence can be recovered for the tetramethyl phenylene containing polymer, revealing a record‐high external quantum efficiency (EQE) of 23.5 % (68.8 cd A?1, 60.0 lm W?1) and Commission Internationale de l′Eclairage (CIE) coordinates of (0.25, 0.52). Combined with an orange‐red TADF emitter, a bright white electroluminescence is also obtained with a peak EQE of 20.9 % (61.1 cd A?1, 56.4 lm W?1) and CIE coordinates of (0.36, 0.51).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号