首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A unique two‐step modular system for site‐specific antibody modification and conjugation is reported. The first step of this approach uses enzymatic bioconjugation with the transpeptidase Sortase A for incorporation of strained cyclooctyne functional groups. The second step of this modular approach involves the azide–alkyne cycloaddition click reaction. The versatility of the two‐step approach has been exemplified by the selective incorporation of fluorescent dyes and a positron‐emitting copper‐64 radiotracer for fluorescence and positron‐emission tomography imaging of activated platelets, platelet aggregates, and thrombi, respectively. This flexible and versatile approach could be readily adapted to incorporate a large array of tailor‐made functional groups using reliable click chemistry whilst preserving the activity of the antibody or other sensitive biological macromolecules.  相似文献   

2.
Identification of tumors which over-express Epidermal Growth Factor Receptor (EGFR) is important in selecting patients for anti-EGFR therapies. Enzymatic bioconjugation was used to introduce positron-emitting radionuclides (89Zr, 64Cu) into an anti-EGFR antibody fragment for Positron Emission Tomography (PET) imaging the same day as injection. A monovalent antibody fragment with high affinity for EGFR was engineered to include a sequence that is recognized by the transpeptidase sortase A. Two different metal chelators, one for 89ZrIV and one for 64CuII, were modified with a N-terminal glycine to enable them to act as substrates in sortase A mediated bioconjugation to the antibody fragment. Both fragments provided high-quality PET images of EGFR positive tumors in a mouse model at 3 hours post-injection, a significant advantage when compared to radiolabeled full antibodies that require several days between injection of the tracer and imaging. The use of enzymatic bioconjugation gives reproducible homogeneous products with the metal complexes selectively installed on the C-terminus of the antibody potentially simplifying regulatory approval.

Enzymatic bioconjugation to introduce positron-emitting radionuclides (89Zr, 64Cu) into an anti-EGFR antibody fragment allows same day imaging with positron emission tomography.  相似文献   

3.
Protein bioconjugation has been a crucial tool for studying biological processes and developing therapeutics. Sortase A (SrtA), a bacterial transpeptidase, has become widely used for its ability to site‐specifically label proteins with diverse functional moieties, but a significant limitation is its poor reaction kinetics. In this work, we address this by developing proximity‐based sortase‐mediated ligation (PBSL), which improves the ligation efficiency to over 95 % by linking the target protein to SrtA using the SpyTag–SpyCatcher peptide–protein pair. By expressing the target protein with SpyTag C‐terminal to the SrtA recognition motif, it can be covalently captured by an immobilized SpyCatcher–SrtA fusion protein during purification. Following the ligation reaction, SpyTag is cleaved off, rendering PBSL traceless, and only the labeled protein is released, simplifying target protein purification and labeling to a single step.  相似文献   

4.
Activated platelets provide a promising target for imaging inflammatory and thrombotic events along with site‐specific delivery of a variety of therapeutic agents. Multifunctional protein micelles bearing targeting and therapeutic proteins were now obtained by one‐pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single‐chain antibody (scFv), which binds to the ligand‐induced binding site (LIBS) of activated GPIIb/IIIa receptors, enabled the efficient detection of thrombi. The inhibition of thrombus formation was subsequently accomplished by incorporating the catalytically active domain of thrombomodulin (TM) onto the micelle corona for the local generation of activated protein C, which inhibits the formation of thrombin. An effective strategy has been developed for the preparation of protein micelles that can be targeted to sites of activated platelets with broad potential for treatment of acute thrombotic events.  相似文献   

5.
The site‐specific modification of proteins with fluorophores can render a protein fluorescent without compromising its function. To avoid self‐quenching from multiple fluorophores installed in close proximity, we used Holliday junctions to label proteins site‐specifically. Holliday junctions enable modification with multiple fluorophores at reasonably precise spacing. We designed a Holliday junction with three of its four arms modified with a fluorophore of choice and the remaining arm equipped with a dibenzocyclooctyne substituent to render it reactive with an azide‐modified fluorescent single‐domain antibody fragment or an intact immunoglobulin produced in a sortase‐catalyzed reaction. These fluorescent Holliday junctions improve fluorescence yields for both single‐domain and full‐sized antibodies without deleterious effects on antigen binding.  相似文献   

6.
A simple polymerization of trichlorophosphoranimine (Cl3P = N−SiMe3) mediated by functionalized triphenylphosphines is presented. In situ initiator formation and the subsequent polymerization progress are investigated by 31P NMR spectroscopy, demonstrating a living cationic polymerization mechanism. The polymer chain lengths and molecular weights of the resulting substituted poly(organo)phosphazenes are further studied by 1H NMR spectroscopy and size exclusion chromatography. This strategy facilitates the preparation of polyphosphazenes with controlled molecular weights and specific functional groups at the α‐chain end. Such well‐defined, mono‐end‐functionalized polymers have great potential use in bioconjugation, surface modification, and as building blocks for complex macromolecular constructs.

  相似文献   


7.
Formylglycine‐generating enzymes are of increasing interest in the field of bioconjugation chemistry. They catalyze the site‐specific oxidation of a cysteine residue to the aldehyde‐containing amino acid Cα‐formylglycine (FGly). This non‐canonical residue can be generated within any desired target protein and can subsequently be used for bioorthogonal conjugation reactions. The prototypic formylglycine‐generating enzyme (FGE) and the iron‐sulfur protein AtsB display slight variations in their recognition sequences. We designed specific tags in peptides and proteins that were selectively converted by the different enzymes. Combination of the different tag motifs within a single peptide or recombinant protein enabled the independent and consecutive introduction of two formylglycine residues and the generation of heterobifunctionalized protein conjugates.  相似文献   

8.
The incorporation of metal ions into nucleic acids by means of metal‐mediated base pairs represents a promising and prominent strategy for the site‐specific decoration of these self‐assembling supramolecules with metal‐based functionality. Over the past 20 years, numerous nucleoside surrogates have been introduced in this respect, broadening the metal scope by providing perfectly tailored metal‐binding sites. More recently, artificial nucleosides derived from natural purine or pyrimidine bases have moved into the focus of AgI‐mediated base pairing, due to their expected compatibility with regular Watson–Crick base pairs. This minireview summarizes these advances in metal‐mediated base pairing but also includes further recent progress in the field. Moreover, it addresses other aspects of metal‐modified nucleic acids, highlighting an expansion of the concept to metal‐mediated base triples (in triple helices and three‐way junctions) and metal‐mediated base tetrads (in quadruplexes). For all types of metal‐modified nucleic acids, proposed or accomplished applications are briefly mentioned, too.  相似文献   

9.
Antibodies have found applications in several fields, including, medicine, diagnostics, and nanotechnology, yet methods to modulate antibody–antigen binding using an external agent remain limited. Here, we have developed photoactive antibody fragments by genetic site‐specific replacement of single tyrosine residues with photocaged tyrosine, in an antibody fragment, 7D12. A simple and robust assay is adopted to evaluate the light‐mediated binding of 7D12 mutants to its target, epidermal growth factor receptor (EGFR), on the surface of cancer cells. Presence of photocaged tyrosine reduces 7D12‐EGFR binding affinity by over 20‐fold in two out of three 7D12 mutants studied, and binding is restored upon exposure to 365 nm light. Molecular dynamics simulations explain the difference in effect of photocaging on 7D12‐EGFR interaction among the mutants. Finally, we demonstrate the application of photoactive antibodies in delivering fluorophores to EGFR‐positive live cancer cells in a light‐dependent manner.  相似文献   

10.
Metal‐mediated base pairs can be used to insert metal ions into nucleic acids at precisely defined positions. As structural data on the resulting metal‐modified DNA are scarce, appropriate model complexes need to be synthesized and structurally characterized. Accordingly, the molecular structures of nine transition metal complexes of N‐methyl‐2, 2'‐dipicolylamine (dipic) are reported. In combination with an azole‐containing artificial nucleoside, this tridentate ligand had recently been used to generate metal‐mediated base pairs (Chem. Commun. 2011 , 47, 11041–11043). The PdII and PtII complexes reported here confirm that the formation of planar complexes (as required for a metal‐mediated base pair) comprising N‐methyl‐2, 2'‐dipicolylamine is possible. Two HgII complexes with differing stoichiometry indicate that a planar structure might also be formed with this metal ion, even though it is not favored. In the complex [Ag2(dipic)2](ClO4)2, the two AgI ions are located close to one another with an Ag ··· Ag distance of 2.9152(3) Å, suggesting the presence of a strong argentophilic interaction.  相似文献   

11.
We provide the first demonstration that isopeptide ligation, a noncanonical activity of the enzyme sortase A, can be used to modify recombinant proteins. This reaction was used in vitro to conjugate small molecules to a peptide, an engineered targeting protein, and a full‐length monoclonal antibody with an exquisite level of control over the site of conjugation. Attachment to the protein substrate occurred exclusively through isopeptide bonds at a lysine ε‐amino group within a specific amino acid sequence. This reaction allows more than one molecule to be site‐specifically conjugated to a protein at internal sites, thereby overcoming significant limitations of the canonical native peptide ligation reaction catalyzed by sortase A. Our method provides a unique chemical ligation procedure that is orthogonal to existing methods, supplying a new method to site‐specifically modify lysine residues that will be a valuable addition to the protein conjugation toolbox.  相似文献   

12.
Azido 18F‐arenes are important and versatile building blocks for the radiolabeling of biomolecules via Huisgen cycloaddition (“click chemistry”) for positron emission tomography (PET). However, routine access to such clickable agents is challenged by inefficient and/or poorly defined multistep radiochemical approaches. A high‐yielding direct radiofluorination for azido 18F‐arenes was achieved through the development of an ortho‐oxygen‐stabilized iodonium derivative (OID). This OID strategy addresses an unmet need for a reliable azido 18F‐arene clickable agent for bioconjugation reactions. A ssDNA aptamer was radiolabeled with this agent and visualized in a xenograft mouse model of human colon cancer by PET, which demonstrates that this OID approach is a convenient and highly efficient way of labeling and tracking biomolecules.  相似文献   

13.
To develop a metal–organic framework (MOF) for hydrogen storage, SNU‐200 incorporating a 18‐crown‐6 ether moiety as a specific binding site for selected cations has been synthesized. SNU‐200 binds K+, NH4+, and methyl viologen(MV2+) through single‐crystal to single‐crystal transformations. It exhibits characteristic gas‐sorption properties depending on the bound cation. SNU‐200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol?1) than other zinc‐based MOFs. Among the cation inclusions, K+ is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol?1) as a result of the accessible open metal sites on the K+ ion.  相似文献   

14.
The enzyme sortase A is a ligase which catalyzes transpeptidation reactions. 1 , 2 Surface proteins, including virulence factors, that have a C terminal recognition sequence are attached to Gly5 on the peptidoglycan of bacterial cell walls by sortase A. 1 The enzyme is an important anti‐virulence and anti‐infective drug target for resistant strains of Gram‐positive bacteria. 2 In addition, because sortase A enables the splicing of polypeptide chains, the transpeptidation reaction catalyzed by sortase A is a potentially valuable tool for protein science. 3 Here we describe the total chemical synthesis of enzymatically active sortase A. The target 148 residue polypeptide chain of sortase AΔN59 was synthesized by the convergent chemical ligation of four unprotected synthetic peptide segments. The folded protein molecule was isolated by size‐exclusion chromatography and had full enzymatic activity in a transpeptidation assay. Total synthesis of sortase A will enable more sophisticated engineering of this important enzyme molecule.  相似文献   

15.
The ability to prepare noble metal nanostructures of a desired composition, size, and shape enables their resulting properties to be exquisitely tailored, which has led to the use of these structures in numerous applications, ranging from medicine to electronics. The prospect of using light to guide nanoparticle reactions is extremely attractive since one can, in principle, regulate particle growth based on the ability of the nanostructures to absorb a specific excitation wavelength. Therefore, using the nature of light, one can generate a homogenous population of product nanoparticles from a heterogeneous starting population. The best example of this is afforded by plasmon‐mediated syntheses of metal nanoparticles, which use visible light irradiation and plasmon excitation to drive the chemical reduction of Ag+ by citrate. Since the initial discovery that Ag triangular prisms could be prepared by the photo‐induced conversion of Ag spherical nanoparticles, plasmon‐mediated synthesis has become a highly controllable technique for preparing a number of different Ag particles with tight control over shape, as well as a wide variety of Au‐Ag bimetallic nanostructures. We discuss the underlying physical and chemical factors that drive structural selection and conclude by outlining some of the important design considerations for controlling particle shape as learned through studies of plasmon‐mediated reactions, but applicable to all methods of noble metal nanocrystal synthesis.  相似文献   

16.
17.
Bioorthogonal control of metal‐ion sensors for imaging metal ions in living cells is important for understanding the distribution and fluctuation of metal ions. Reported here is the endogenous and bioorthogonal activation of a DNAzyme fluorescent sensor containing an 18‐base pair recognition site of a homing endonuclease (I‐SceI), which is found by chance only once in 7×1010 bp of genomic sequences, and can thus form a near bioorthogonal pair with I‐SceI for DNAzyme activation with minimal effect on living cells. Once I‐SceI is expressed inside cells, it cleaves at the recognition site, allowing the DNAzyme to adopt its active conformation. The activated DNAzyme sensor is then able to specifically catalyze cleavage of a substrate strand in the presence of Mg2+ to release the fluorophore‐labeled DNA fragment and produce a fluorescent turn‐on signal for Mg2+. Thus I‐SceI bioorthogonally activates the 10–23 DNAzyme for imaging of Mg2+ in HeLa cells.  相似文献   

18.
Antibodies are currently the fastest‐growing class of therapeutics. Although naked antibodies have proven valuable as pharmaceutical agents, they have some limitations, such as low tissue penetration and a long circulatory half‐life. They have been conjugated to toxic payloads, PEGs, or radioisotopes to increase and optimize their therapeutic efficacy. Although nonspecific conjugation is suitable for most in vitro applications, it has become evident that site specifically modified antibodies may have advantages for in vivo applications. Herein we describe a novel approach in which the antibody fragment is tagged with two handles: one for the introduction of a fluorophore or 18F isotope, and the second for further modification of the fragment with a PEG moiety or a second antibody fragment to tune its circulatory half‐life or its avidity. Such constructs, which recognize Class II MHC products and CD11b, showed high avidity and specificity. They were used to image cancers and could detect small tumors.  相似文献   

19.
The first dinuclear metal‐mediated base pair containing divalent metal ions has been prepared. A combination of the neutral bis(monodentate) purine derivative 1,N6‐ethenoadenine (ϵA), which preferentially binds two metal ions with a parallel alignment of the N−M bonds, and the canonical nucleobase thymine (T), which readily deprotonates in the presence of HgII and thereby partially compensates the charge accumulation due to the two closely spaced divalent metal ions, yields the dinuclear T‐HgII2ϵA base pair. This metal‐mediated base pair stabilizes the DNA oligonucleotide duplex as shown by an increase of 8 °C in its melting temperature. Formation of the base pair was demonstrated by temperature‐dependent UV spectroscopy as well as by titration experiments monitored by UV and CD spectroscopy.  相似文献   

20.
Exploration of the full potential of thioamide substitution as a tool in the chemical biology of peptides and proteins has been hampered by insufficient synthetic strategies for the site‐specific introduction of a thioamide bond into a peptide backbone. A novel ynamide‐mediated two‐step strategy for thiopeptide bond formation with readily available monothiocarboxylic acids as thioacyl donors is described. The α‐thioacyloxyenamide intermediates formed from the ynamides and monothiocarboxylic acids can be purified, characterized, and stored. The balance between their activity and stability enables them to act as effective thioacylating reagents to afford thiopeptide bonds under mild reaction conditions. Amino acid functional groups such as OH, CONH2, and indole NH groups need not be protected during thiopeptide synthesis. The modular nature of this strategy enables the site‐specific incorporation of a thioamide bond into peptide backbones in both solution and the solid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号