首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural macromolecules, i.e., sequence‐controlled polymers, build the basis for life. In synthetic macromolecular chemistry, reliable tools for the formation of sequence‐controlled macromolecules are rare. A robust and efficient chain‐growth approach based on the simultaneous living anionic polymerization of sulfonamide‐activated aziridines for sequence control of up to five competing monomers resulting in gradient copolymers is presented. The simultaneous azaanionic copolymerization is monitored by real‐time 1H NMR spectroscopy for each monomer at any time during the reaction. The monomer sequence can be adjusted by the monomer reactivity, depending on the electron‐withdrawing effect by the sulfonamide (nosyl‐, brosyl‐, tosyl‐, mesyl‐, busyl) groups. This method offers unique opportunities for sequence control by competing copolymerization: a step forward to well‐engineered synthetic polymers with defined microstructures.

  相似文献   


2.
Pentacyclic diindeno[1,2‐b:2′,1′‐d]thiophene ( DIDT ) unit is a rigid and coplanar conjugated molecule. To the best of our knowledge, this attractive molecule has never been incorporated into a polymer and thus its application in polymer solar cells has never been explored. For the first time, we report the detailed synthesis of the tetra‐alkylated DIDT molecule leading to its dibromo‐ and diboronic ester derivatives, which are the key monomers for preparation of DIDT ‐based polymers. Two donor–acceptor alternating polymers, poly(diindenothiophene‐alt‐benzothiadiazole) PDIDTBT and poly(diindenothiophene‐alt‐dithienylbenzothiadiazole) PDIDTDTBT , were synthesized by using Suzuki polymerization. Copolymer PTDIDTTBT was also prepared by using Stille polymerization. Although PTDIDTTBT is prepared through a manner of random polymerization, we found that the different reactivities of the dibromo‐monomers lead to the resulting polymer having a block copolymer arrangement. With the higher structural regularity, PTDIDTTBT , symbolized as (thiophene‐alt‐ DIDT )0.5block‐(thiophene‐alt‐BT)0.5, shows the higher degree of crystallization, stronger π–π stacking, and broader absorption spectrum in the solid state, as compared to its alternating PDIDTDTBT analogue. Bulk heterojunction photovoltaic cells based on ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al configuration were fabricated and characterized. PDIDTDTBT /PC71BM and PTDIDTTBT /PC71BM systems exhibited promising power‐conversion efficiencies (PCEs) of 1.65 % and 2.00 %, respectively. Owing to the complementary absorption spectra, as well as the compatible structures of PDIDTDTBT and PTDIDTTBT , the PCE of the device based on the ternary blend PDIDTDTBT / PTDIDTTBT /PC71BM was further improved to 2.40 %.  相似文献   

3.
Three new donor–acceptor‐type copolymers ( P1 , P2 , P3 ) consisting of dicyanofluorene as acceptor and various donor moieties were designed and synthesized. Optoelectronic properties were studied in detail by means of UV‐visible absorption and fluorescence spectroscopy, cyclic voltammetry, space‐charge‐limited current (SCLC), flash‐photolysis time‐resolved microwave conductivity (FP‐TRMC), and density functional theory (DFT). All polymers showed strong absorption in the UV‐visible region and the absorption maximum undergoes redshift with an increasing number of thiophene units in the polymer backbone. SCLC analysis showed that the electron mobilities of the polymers in the bulk state were 1 to 2 orders higher than that of the corresponding hole mobilities, which indicated the n‐type nature of the materials. By using FP‐TRMC, the intrapolymer charge‐carrier mobility was assessed and compared with the interpolymer mobility obtained by SCLC. The polymers exhibited good electron‐accepting properties sufficiently high enough to oxidize the excited states of regioregular poly(3‐hexylthiophene) (P3HT (donor)), as evident from the FP‐TRMC analysis. The P3 polymer exhibited the highest FP‐TRMC transients in the pristine form as well as when blended with P3HT. Use of these polymers as n‐type materials in all‐polymer organic solar cells was also explored in combination with P3HT. In accordance with the TRMC results, P3 exhibited superior electron‐transport and photovoltaic properties to the other two polymers, which is explained by the distribution of the energy levels of the polymers by using DFT calculations.  相似文献   

4.
This article explores the feasibility of poly(pentafluorophenyl methacrylate) (PPFMA) prepared by reversible addition fragmentation chain transfer (RAFT) polymerization as a platform for the preparation of diverse libraries of functional polymers via postpolymerization modification with primary amines. Experiments with a broad range of functional amines and PPFMA precursors of different molecular weights indicated that the postpolymerization modification reaction proceeds with good to excellent conversion for a diverse variety of functional amines and is essentially independent of the PPFMA precursor molecular weight. The RAFT end group, which was well preserved throughout the polymerization, is cleaved during postpolymerization modification to generate a thiol end group that provides possibilities for further orthogonal chain‐end modification reactions. The degree of postpolymerization modification can be controlled by varying the relative amount of primary amine that is used and random polymethacrylamide copolymers can be prepared via a one‐pot/two‐step sequential addition procedure. Cytotoxicity experiments revealed that the postpolymerization modification strategy does not lead to any additional toxicity compared with the corresponding polymer obtained via direct polymerization, which makes this approach also of interest for the synthesis of biologically active polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4332–4345, 2009  相似文献   

5.
For a complementary hydrogen‐bonded complex, when every hydrogen‐bond acceptor is on one side and every hydrogen‐bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA–DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen‐bonded sequences. The easily synthesized and further derivatized AAA–DDD system is very desirable for hydrogen‐bonded functional materials. In this case, AAA and DDD, starting from 4‐methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×107 M ?1. The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA–DDD triply hydrogen bonded have also been developed. This work may make AAA–DDD triply hydrogen‐bonded sequences easily accessible for stimuli‐responsive materials.  相似文献   

6.
1‐, 2‐, and 6‐(Ferrocenylethynyl)azulene derivatives 10 – 16 have been prepared by palladium‐catalyzed alkynylation of ethynylferrocene with the corresponding haloazulenes under Sonogashira–Hagihara conditions. Compounds 10 – 16 reacted with tetracyanoethylene (TCNE) in a [2+2] cycloaddition–cycloreversion reaction to afford the corresponding 2‐azulenyl‐1,1,4,4,‐tetracyano‐3‐ferrocenyl‐1,3‐butadiene chromophores 17 – 23 in excellent yields. The redox behavior of the novel azulene chromophores 17 – 23 was examined by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their multistep electrochemical reduction properties. Moreover, a significant color change was observed by visible spectroscopy under electrochemical reduction conditions.  相似文献   

7.
8.
Conjugated microporous polymer networks have been prepared from the strong electron donor tetrathiafulvalene (TTF) and 1,3,5‐triethynylbenzene (TEB) by using the Sonogashira–Hagihara cross‐coupling reaction. Optimization of reaction conditions yields polymers with surface areas of up to 434 m2 g?1. The strong electron‐donating properties of the network can be proven by iodine exposure. Structural and electronic changes due to formation of the charge‐transfer salt from TTFs in the porous network and iodine within the pores are investigated.  相似文献   

9.
We report a comparative study of two organic soluble, vinylene‐based, alternating donor–acceptor copolymers with 1,4‐(2,5‐dihexadecyloxyphenylene) as the donor; the acceptor is either a 2,5‐linked pyridine or a 5,8‐linked 2,3‐diphenylpyrido[3,4‐b]pyrazine. The polymers are synthesized via a Heck coupling methodology from a dihalo monomer and a divinyl monomer to yield number‐average molecular weights of 16,000 g/mol for the pyridine polymer (PPyrPV) and 6500 g/mol for the pyridopyrazine polymer (PPyrPyrPV), with high solubility in common chlorinated solvents and lower solubility in less polar solvents (e.g., tetrahydrofuran). Thin‐film measurements show band gaps of 2.2 and 1.8 eV for PPyrPV and PPyrPyrPV, respectively. Both polymers exhibit photoluminescence in solution and in the solid state and exhibit electroluminescence when incorporated into light‐emitting diodes. In this case, a broad red emission centered at 690 nm for PPyrPV and a near‐infrared emission centered at 800 nm for PPyrPyrPV have been observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1417–1431, 2005  相似文献   

10.
Aryl‐substituted 1,1,4,4‐tetracyano‐1,3‐butadienes (FcTCBDs) and bis(1,1,4,4‐tetracyanobutadiene)s (bis‐FcTCBDs), possessing a ferrocenyl group on each terminal, were prepared by the reaction of a variety of alkynes with tetracyanoethylene (TCNE) in a [2+2] cycloaddition reaction, followed by retro‐electrocyclization of the initially formed [2+2] cycloadducts (i.e., cyclobutene derivatives). The characteristic intramolecular charge transfer (ICT) between the donor (ferrocene) and acceptor (TCBD) moieties were investigated by using UV/Vis spectroscopy. The redox behaviors of FcTCBDs and bis‐FcTCBDs were examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their properties of multi‐electron transfer depending on the number of ferrocene and TCBD moieties. Moreover, significant color changes were observed by visible spectroscopy under the electrochemical reduction conditions.  相似文献   

11.
12.
This review covers the synthesis and polymerization of benzo[1,2‐b: 4,5‐b′]dithiophene (BDT) to generate semiconducting polymers used in organic field‐effect transistors (OFET) and organic solar cells applications.  相似文献   

13.
The CO2‐responsive and biocatalytic assembly based on conjugated polymers has been demonstrated by combining the signal amplification property of the polythiophene derivative (PTP) and the catalytic actions of carbonic anhydrase (CA). CO2 is applied as a new trigger mode to construct the smart assembly by controlling the electrostatic and hydrophobic interactions between the PTP molecules in aqueous solution, leading to the visible fluorescence changes. Importantly, the assembly transformation of PTP can be specifically and highly accelerated by CA based on the efficient catalytic activity of CA for the inter‐conversion between CO2 and HCO3, mimicking the CO2‐associated biological processes that occurred naturally in living organisms. Moreover, the PTP‐based assembly can be applied for biomimetic CO2 sequestration with fluorescence monitoring in the presence of CA and calcium.

  相似文献   


14.
Two water‐soluble para‐xylylene‐connected 4,4′‐bipyridinium (BIPY2+) polymers have been prepared. UV‐Vis absorption, 1H NMR spectroscopy, and cyclic voltammetry experiments support that in water the BIPY2+ units in the polymers form stable 1:1 charge‐transfer complexes with tetrathiafulvalene (TTF) guests that bear two or four carboxylate groups. These charge‐transfer complexes are stabilized by the donor–acceptor interaction between electron‐rich TTF and electron‐deficient BIPY2+ units and electrostatic attraction between the dicationic BIPY2+ units and the anionic carboxylate groups attached to the TTF core. On the basis of UV‐Vis experiments, a lower limit to the apparent association constant of the TTF?BIPY2+ complexes of the mixtures, 1.8×106 m ?1, has been estimated in water. Control experiments reveal substantially reduced binding ability of the neutral TTF di‐ and tetracarboxylic acids to the BIPY2+ molecules and polymers. Moreover, the stability of the charge‐transfer complexes formed by the BIPY2+ units of the polymers are considerably higher than that of the complexes formed between two monomeric BIPY2+ controls and the dicarboxylate‐TTF donor; this has been attributed to the mutually strengthened electron‐deficient nature of the BIPY2+ units of the polymers due to the electron‐withdrawing effect of the BIPY2+ units.  相似文献   

15.
Two phenothiazine‐based conjugated polymers, poly(3, 7‐divinylene‐N‐octyl‐phenothiazine‐alt‐benzo‐2,1,3‐ thiadiazole) (PQS) and poly(3,7‐divinylene‐N‐octyl‐phenothiazine‐alt‐benzo‐2,1,3‐selenodiazole) (PQSe) were synthesized by Heck coupling reaction. The chemical structures of the two polymers were confirmed by 1H‐NMR and Ft‐IR. They showed good solubility in some common organic solvents such as tetrahydrofuran (THF), chloroform. The weight‐average molecular weight (Mw) of the polymers determined by GPC in THF against polystyrene standards was 3.7 × 103 for PQS and 1.9 × 103 for PQSe, respectively. The temperatures of 5% weight loss (T5) were 385.0°C for PQS and 324.0°C for PQSe, respectively, determined by TGA measurements under nitrogen ambience. UV–vis absorption spectra of the polymer films showed the absorption maxima at 537 nm for PQS and 539 nm for PQSe, with the full width at half maximum (FWHM) of 190 and 230 nm, respectively. The optical band gaps ( ) of the polymer films are 1.86 eV for PQS and 1.80 eV for PQSe, respectively. As the polymers have low‐band‐gap and broad absorption in the visible region, they may be used as potential light‐harvesting materials for photovoltaic devices (PVDs). Furthermore, photoluminescence (PL) spectra of the polymer solutions showed the emission maxima at 698 nm for PQS and 709 nm for PQSe, with FWHM of 152 nm and 167 nm, respectively, which revealed that these two polymers may be used as red and near infrared light‐emitting materials for polymeric light‐emitting diodes (PLEDs). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Post‐polymerization modification is based on the direct polymerization or copolymerization of monomers bearing chemoselective handles that are inert towards the polymerization conditions but can be quantitatively converted in a subsequent step into a broad range of other functional groups. The success of this method is based on the excellent conversions achievable under mild conditions, the excellent functional‐group tolerance, and the orthogonality of the post‐polymerization modification reactions. This Review surveys different classes of reactive polymer precursors bearing chemoselective handles and discusses issues related to the preparation of these reactive polymers by direct polymerization of appropriately functionalized monomers as well as the post‐polymerization modification of these precursors into functional polymers.  相似文献   

17.
Low‐bandgap near‐infrared polymers are usually synthesized using the common donor–acceptor (D–A) approach. However, recently polymer chemists are introducing more complex chemical concepts for better fine tuning of their optoelectronic properties. Usually these studies are limited to one or two polymer examples in each case study so far, though. In this study, the dependence of optoelectronic and macroscopic (device performance) properties in a series of six new D–A1–D–A2 low bandgap semiconducting polymers is reported for the first time. Correlation between the chemical structure of single‐component polymer films and their optoelectronic properties has been achieved in terms of absorption maxima, optical bandgap, ionization potential, and electron affinity. Preliminary organic photovoltaic results based on blends of the D–A1–D–A2 polymers as the electron donor mixed with the fullerene derivative [6,6]‐phenyl‐C71‐butyric acid methyl ester demonstrate power conversion efficiencies close to 4% with short‐circuit current densities (J sc) of around 11 mA cm−2, high fill factors up to 0.70, and high open‐circuit voltages (V ocs) of 0.70 V. All the devices are fabricated in an inverted architecture with the photoactive layer processed in air with doctor blade technique, showing the compatibility with roll‐to‐roll large‐scale manufacturing processes.

  相似文献   


18.
A series of mono‐ (MPTTF) and bis(pyrrolo)tetrathiafulvalene (BPTTF) derivatives tethered to one or two C60 moieties was synthesized and characterized. The synthetic strategy for these dumbbell‐shaped compounds was based on a 1,3‐dipolar cycloaddition reaction between aldehyde‐functionalized MPTTF/BPTTF derivatives, two different tailor‐made amino acids, and C60. Electronic communication between the MPTTF/BPTTF units and the C60 moieties was studied by a variety of techniques including cyclic voltammetry and absorption spectroscopy. These solution‐based studies indicated no observable electronic communication between the MPTTF/BPTTF units and the C60 moieties. In addition, femtosecond and nanosecond transient absorption spectroscopy revealed, rather surprisingly, that no charge transfer from the MPTTF/BPTTF units to the C60 moieties takes place on excitation of the fullerene moiety. Finally, it was shown that the MPTTF–C60 and C60–BPTTF‐C60 dyad and triad molecules formed self‐assembled monolayers on a Au(111) surface by anchoring to C60.  相似文献   

19.
Thermoresponsive polymers that undergo a solubility phase transition in water are important as basis for the development for a wide variety of responsive and smart materials. In this study, the synthesis of thermoresponsive copolymers is demonstrated by the straightforward one‐pot statistical postpolymerization modification of well‐defined poly(2‐isopropenyl‐2‐oxazoline) (PiPOx) by ring‐opening reaction with multiple carboxylic acids. The reactions are carried out using dual, triple, and quadruple mixtures of up to four different aliphatic carboxylic acids. The cloud point temperatures of the resulting polymethacrylamide copolymers with ester pendent groups can be finely tuned by adjusting the feed ratio and the hydrophilic–hydrophobic balance of the acids that are used for the ring‐opening modification of PiPOx. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 360–366  相似文献   

20.
《化学:亚洲杂志》2017,12(15):1935-1943
3‐Hexyloxy‐4‐cyanothiophene, 3‐pyrrolidil‐4‐cyanothiophene, and 3,4‐ethylenedioxythiophene (EDOT) units are used with benzothiadiazole as building blocks for the development of three new conjugated donor–acceptor–donor (DAD) derivatives. The DAD molecules have the central acceptor part, which is formed by combining electron‐withdrawing cyano groups and the benzothiadiazole moiety, in common. Theoretical calculations and UV/Vis and electrochemical data reveal the key role of the end‐capped donor to tune the electronic properties of the derivatives. A study of the electropolymerization process of the three derivatives shows the strong influence of the donor parts on both the reactivity of the precursors and the electronic properties of the resulting polymers. Derivatives end‐capped with pyrrolidinocyano thiophene or EDOT units lead to films of polymers presenting low band gaps of around 0.9–1.4 eV. Upon oxidation, the two polymers present different behavior. In the presence of the pyrrolidinocyano thiophene moieties, oxidation leads to a blueshift of the absorption bands, whereas with EDOT units a classical redshift, giving high absorption in the near‐IR region, is observed for the oxidized states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号