首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon monoxide (CO) is a very poisonous gas present in the atmosphere. It has significant effects on human beings, animals, plants and the climate. Automobile vehicle exhaust contributes 64% of the CO pollution in urban areas. To control this exhaust pollution, various types of catalysts in catalytic converters have been investigated. Increasing costs of noble metals as a catalyst in automobile vehicles motivates the investigation of material that can be substituted for noble metals. Among the non-noble metals, copper (Cu) is found to be the most capable and highly active catalyst for CO oxidation, compared to precious metal catalysts. Lower cost, easy availability and advance preparation conditions with stabilizers, promoters and so on, make Cu a good choice as an auto exhaust purification catalyst. The oxidation of CO proceeds very quickly over Cu°, followed by Cu+ and Cu2+. The Cu2O catalyst is more active in an O2-rich atmosphere than in O2-lean conditions. The reduced species of copper (Cu0, Cu+) are essential for better CO oxidation but smaller Cu particles could be less active than the higher ones. There is a great deal of research available on the Cu catalyst for CO oxidation, but there is a gap in the literature for a review article individually applied to the Cu catalyst for CO oxidation. To fill this gap, the present review updates information on Cu catalysts in the purification of exhaust gases.  相似文献   

2.
In contrast to catalytically active metal single atoms deposited on oxide nanoparticles, the crystalline nature of metal‐organic frameworks (MOFs) allows for a thorough characterization of reaction mechanisms. Using defect‐free HKUST‐1 MOF thin films, we demonstrate that Cu+/Cu2+ dimer defects, created in a controlled fashion by reducing the pristine Cu2+/Cu2+ pairs of the intact framework, account for the high catalytic activity in low‐temperature CO oxidation. Combining advanced IR spectroscopy and density functional theory we propose a new reaction mechanism where the key intermediate is an uncharged O2 species, weakly bound to Cu+/Cu2+. Our results reveal a complex interplay between electronic and steric effects at defect sites in MOFs and provide important guidelines for tailoring and exploiting the catalytic activity of single metal atom sites.  相似文献   

3.
We have studied the catalytic activity of copper-containing zeolite catalysts based on erionite (ERI) in oxidation of CO. We have established that the activity of Cu-ERI systems is due to isolated coordination unsaturated Cu2+ cations which are stabilized in the catalyst on sites with strong tetragonal distortion and are reduced to Cu+ during catalysis. According to X-ray photoelectron spectroscopy (XPS), diffuse reflection electronic spectra, and temperature programmed reduction by hydrogen (TPR-H2) spectra, activity differences between 3% Cu-ERI catalysts obtained from different precursors are determined by the different numbers of Cu2+ cations capable of being reduced during the reaction at T < 400 °C: the higher the content of such cations in the samples, the higher the activity of the Cu-ERI systems. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 317–322, September–October, 2005.  相似文献   

4.
Identification of the active copper species, and further illustration of the catalytic mechanism of Cu‐based catalysts is still a challenge because of the mobility and evolution of Cu0 and Cu+ species in the reaction process. Thus, an unprecedentedly stable Cu‐based catalyst was prepared by uniformly embedding Cu nanoparticles in a mesoporous silica shell allowing clarification of the catalytic roles of Cu0 and Cu+ in the dehydrogenation of methanol to methyl formate by combining isotope‐labeling experiment, in situ spectroscopy, and DFT calculations. It is shown that Cu0 sites promote the cleavage of the O?H bond in methanol and of the C?H bond in the reaction intermediates CH3O and H2COOCH3 which is formed from CH3O and HCHO, whereas Cu+ sites cause rapid decomposition of formaldehyde generated on the Cu0 sites into CO and H2.  相似文献   

5.
Catalytic CO oxidation by molecular O2 is an important model reaction in both the condensed phase and gas‐phase studies. Available gas‐phase studies indicate that noble metal is indispensable in catalytic CO oxidation by O2 under thermal collision conditions. Herein, we identified the first example of noble‐metal‐free heteronuclear oxide cluster catalysts, the copper–vanadium bimetallic oxide clusters Cu2VO3–5? for CO oxidation by O2. The reactions were characterized by mass spectrometry, photoelectron spectroscopy, and density functional calculations. The dynamic nature of the Cu?Cu unit in terms of the electron storage and release is the driving force to promote CO oxidation and O2 activation during the catalysis.  相似文献   

6.
Montmorillonite‐enwrapped copper and scandium catalysts (Cu2+‐ and Sc3+‐monts) were easily prepared by treating Na+‐mont with the aqueous solution of the copper nitrate and scandium triflate, respectively. The resulting Cu2+‐ and Sc3+‐monts showed outstanding catalytic activities for a variety of carbon–carbon bond‐forming reactions, such as the Michael reaction, the Sakurai–Hosomi allylation, and the Diels–Alder reaction, under solvent‐free or aqueous conditions. The remarkable activity of the mont catalysts is attributable to the negatively charged silicate layers that are capable of stabilizing metal cations. Furthermore, these catalysts were reusable without any appreciable loss in activity and selectivity. The Cu2+‐mont‐catalyzed Michael reaction proceeds via a ternary complex in which both the 1,3‐dicarbonyl compound and the enone are coordinated to a Lewis acid Cu2+ center.  相似文献   

7.
Hydrogenation of acetophenone over nano‐Cu/SiO2 catalysts was investigated. The catalysts, prepared by a liquid precipitation method using various precipitating agents, were characterized using low‐temperature nitrogen adsorption, X‐ray diffraction, temperature‐programmed desorption of ammonia, hydrogen temperature‐programmed reduction, transmission electron microscopy and X‐ray photoelectron spectroscopy. It was found that the catalysts prepared by a homogeneous precipitation method had better activity and stability than those prepared by a co‐precipitation method. The catalyst prepared using urea as precipitating agent had well‐dispersed copper species, high surface area and abundant pore structure. The catalytic performance and mechanism of the Cu/SiO2 catalysts were further studied. It was found that the activity and stability of the catalysts could be improved by adjusting the proportion of Cu+/(Cu+ + Cu0). The sample prepared using urea as precipitating agent presented higher activity and selectivity. Also, the catalyst prepared using urea maintained a high catalytic performance while being continuously used for 150 h under the optimal reaction conditions.  相似文献   

8.
Copper doped ceria porous nanostructures with a tunable BET surface area were prepared using an efficient and general metal–organic-framework-driven, self-template route. The XRD, SEM and TEM results indicate that Cu2+ was successfully substituted into the CeO2 lattice and well dispersed in the CeO2:Cu2+ nanocrystals. The CeO2:Cu2+ nanocrystals exhibit a superior bifunctional catalytic performance for CO oxidation and selective catalytic reduction of NO. Interestingly, CO oxidation reactivity over the CeO2:Cu2+ nanocrystals was found to be dependent on the Cu2+ dopants and BET surface area. By tuning the content of Cu2+ and BET surface area through choosing different organic ligands, the 100% conversion temperature of CO over CeO2:Cu2+ nanocrystals obtained from thermolysis of CeCu–BPDC nanocrystals can be decreased to 110 °C. The porous nanomaterials show a high CO conversion rate without any loss in activity even after five cycles. Furthermore, the activity of the catalysts for NO reduction increased with the increase of BET surface, which is in accordance with the results of CO oxidation.  相似文献   

9.
Although the cyclo‐P6 complex [(Cp*Mo)2(μ,η66‐P6)] ( 1 ) was reported 30 years ago, little is known about its chemistry. Herein, we report a high‐yielding synthesis of 1 , the complex 2 , which contains an unprecedented cyclo‐P10 ligand, and the reactivity of 1 towards the “naked” cations Cu+, Ag+, and Tl+. Besides the formation of the single oxidation products 3 a,b which have a bisallylic distorted cyclo‐P6 middle deck, the [M( 1 )2]+ complexes are described which show distorted square‐planar (M=Cu( 4 a ), Ag( 4 b )) or distorted tetrahedral coordinated (M=Cu( 5 )) M+ cations. The choice of solvent enabled control over the reaction outcome for Cu+, as proved by powder XRD and supported by DFT calculations. The reaction with Tl+ affords a layered two‐dimensional coordination network in the solid state.  相似文献   

10.
Catalytic oxidation has been recognized as one of the most efficient and promising techniques for the abatement of CO and volatile organic compounds. In the present work, the CO oxidation mechanism on perfect Cu2O (111) surface was investigated by using density functional theory (DFT) calculations with the periodic surface model. The unsaturated singly coordinated Cu+ site of Cu2O (111) surface could effectively adsorb gaseous CO molecule with a strong adsorption energy of −1.558 eV. The adsorbed O on Cu2O (111) surface is very active toward CO oxidation with only 0.269 eV energy barrier. The reaction between CO and lattice O is the rate‐determining step of Mars‐van‐Krevelen (MvK) type CO oxidation with the energy barrier of 1.629 eV. The CO oxidation cycle initiated by the reaction between coadsorbed CO and O2 at the CuI site has a relatively lower energy barrier of 1.082 eV and is, therefore, more likely to proceed compared with the MvK cycle. Microkinetic rate constants of elementary reaction steps based on the transition state theory were deduced, which could be helpful in the kinetic modeling of CO oxidation on Cu2O surface.  相似文献   

11.
CuCeO catalysts prepared by a hydrothermal method with subsequent calcination are tested for the catalytic oxidation of CO. This synthesis method leads to a homogeneous dispersion of Cu2O, CuO, and CeO2 in the catalysts. The composition of the catalysts is determined by the molar ratio of the metals, the hydrothermal process, and calcination temperature and influences the catalytic performance. The catalyst containing Cu2O exhibits high catalytic activity with almost 100 % CO conversion at 105 °C and shows excellent stability with the conversion ratio not decreasing after four months of storage.  相似文献   

12.
Inspired by the cubic Mn4CaO5 cluster of natural oxygen‐evolving complex in Photosystem II, tetrametallic molecular water oxidation catalysts, especially M4O4 cubane‐like clusters (M=transition metals), have aroused great interest in developing highly active and robust catalysts for water oxidation. Among these M4O4 clusters, however, copper‐based molecular catalysts are poorly understood. Now, bio‐inspired Cu4O4 cubanes are presented as effective molecular catalysts for electrocatalytic water oxidation in aqueous solution (pH 12). The exceptional catalytic activity is manifested with a turnover frequency (TOF) of 267 s?1 for [(LGly‐Cu)4] at 1.70 V and 105 s?1 for [(LGlu‐Cu)4] at 1.56 V. Electrochemical and spectroscopic study revealed a successive two‐electron transfer process in the Cu4O4 cubanes to form high‐valent CuIII and CuIIIO. intermediates during the catalysis.  相似文献   

13.
The oxidation of CO with oxygen over (0.25–6.4)% CuO/CeO2 catalysts in excess H2 is studied. CO conversion increases and the temperature range of the reaction decreases by 100 K as the CuO content is raised. The maximal CO conversion, 98.5%, is achieved on 6.4% CuO/CeO2 at 150°C. At T > 150°C, the CO conversion decreases as a result of the deactivation of part of the active sites because of the dissociative adsorption of hydrogen. CO is efficiently adsorbed on the oxidized catalyst to form CO-Cu+ carbonyls on Cu2O clusters and is oxidized by the oxygen of these clusters, whereas it is neither adsorbed nor oxidized on Cu0 of the reduced catalysts. The activity of the catalysts is recovered after the dissociative adsorption of O2 on Cu0 at T ~ 150°C. The activation energies of CO, CO2, and H2O desorption are estimated, and the activation energy of CO adsorption yielding CO-Cu+ carbonyls is calculated in the framework of the Langmuir-Hinshelwood model.  相似文献   

14.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   

15.
《中国化学》2018,36(7):639-643
Two types of CeO2 nanocubes (average size of 5 and 20 nm, respectively) prepared via the hydrothermal process were selected to load gold species via a deposition‐precipitation (DP) method. Various measurements, including X‐ray diffraction (XRD), Raman spectra, high resolution transmission electron microscopy (HRTEM), in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and temperature‐programmed reduction by hydrogen (H2‐TPR), were applied to characterize the catalysts. It is found that the sample with ceria size of 20 nm (Au/CeO2‐20) was covered by well dispersed both Au3+ and Auδ+ (0 < δ < 1). For the other sample with ceria size of 5 nm (Au/CeO2‐5), Au3+ is the dominant gold species. Au/CeO2‐20 performed better catalytic activity for CO oxidation because of the strong CO adsorption of Auδ+ in the catalysts. The catalytic activity of Au/CeO2‐5 was improved due to the transformation of Au3+ to Auδ+. Based on the CO oxidation and in situ DRIFTS results, Auδ+ is likely to play a more important role in catalyzing CO oxidation reaction.  相似文献   

16.
Operando X‐ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu‐exchanged SSZ‐13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO‐assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu‐bound NO2 with proximal NH4+ completes the catalytic cycle. N2 is produced in both reduction and oxidation half‐cycles.  相似文献   

17.
The single copper atom doped clusters CuAl4O7–9? can catalyze CO oxidation by O2. The CuAl4O7–9? clusters are the first group of experimentally identified noble‐metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4O9CO? is much more reactive than CuAl4O9? in the reaction with CO to generate CO2. One adsorbed CO is crucial to stabilize Cu of CuAl4O9? around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble‐metal catalysis was discussed.  相似文献   

18.
A facile one‐pot synthesis of 2,5‐disubstituted oxazoles was developed via cyclization of aldoximes and phenylacetylene then dehydrogenation oxidation. 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone was studied for the selective oxidation of oxazolines using Cu2+/Li+ as catalyst and O2 as indirect oxidant. The reaction results showed that this catalyst system can effectively catalyze the oxidation of oxazolines to the corresponding oxazoles. Thus, a variety of polysubstituted oxazoles was easily synthesized in high yields by catalytic oxidation of 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone/CuCl2/LiCl/O2.  相似文献   

19.
The transition to a hydrogen economy requires the development of cost-effective methods for purifying hydrogen from CO. In this study, we explore the possibilities of Cu/ZSM-5 as an adsorbent for this purpose. Samples obtained by cation exchange from aqueous solution (AE) and solid-state exchange with CuCl (SE) were characterized by in situ EPR and FTIR, H2-TPR, CO-TPD, etc. The AE samples possess mainly isolated Cu2+ cations not adsorbing CO. Reduction generates Cu+ sites demonstrating different affinity to CO, with the strongest centres desorbing CO at about 350 °C. The SE samples have about twice higher Cu/Al ratios, as one H+ is exchanged with one Cu+ cation. Although some of the introduced Cu+ sites are oxidized to Cu2+ upon contact with air, they easily recover their original oxidation state after thermal treatment in vacuum or under inert gas stream. In addition, these Cu+ centres regenerate at relatively low temperatures. It is important that water does not block the CO adsorption sites because of the formation of Cu+(CO)(H2O)x complexes. Dynamic adsorption studies show that Cu/ZSM-5 selectively adsorbs CO in the presence of hydrogen. The results indicate that the SE samples are very perspective materials for purification of H2 from CO.  相似文献   

20.
In this study, IR studies of the coadsorption of ethanol and CO on Cu+ cations evidenced the transfer of electrons from ethanol to Cu+, which caused the lowering of the frequency of the band attributed to CO bonded to the same Cu+ cation due to the more effective π back donation of d electrons of Cu to antibonding π* orbitals of CO. The reaction of ethanol with acid sites in zeolite HFAU above 370 K produced water and ethane, polymerizing to polyethylene. Ethanol adsorbed on zeolite Cu(2)HFAU containing acid sites and Cu+exch also produced ethene, but in this case, the ethene was bonded to Cu+ and did not polymerize. C=C stretching, which is IR non-active in the free ethene molecule, became IR active, and a weak IR band at 1538 cm−1 was present. The reaction of ethanol above 370 K in Cu(5)NaFAU zeolite (containing small amounts of Cu+exch and bigger amounts of Cu+ox, Cu2+exch and CuO) produced acetaldehyde, which was further oxidized to the acetate species (CH3COO). As oxygen was not supplied, the donors of oxygen were the Cu species present in our zeolite. The CO and NO adsorption experiments performed in Cu-zeolite before and after ethanol reaction evidenced that both Cu+ox and Cu2+ (Cu2+exch and CuO) were consumed by the ethanol oxidation reaction. The studies of the considered reaction of bulk CuO and Cu2O as well as zeolites, in which the contribution of Cu+ox species was reduced by various treatments, suggest that ethanol was oxidized to acetaldehyde by Cu2+ox (the role of Cu+ox could not be elucidated), but Cu+ox was the oxygen donor in the acetate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号