首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a series of azolium poly(azolyl)borate ionic liquids (ILs) for reversible SO2 capture. Density functional calculations demonstrate that the designed borate anions can strongly bond to SO2 at multiple sites with nearly uniform binding energies. Thus, as well as high overall uptakes, the ILs can achieve much higher effective uptakes (the uptake difference between absorption and desorption conditions) than existing SO2‐capture reagents. The larger size of the borate anions, the evenly distributed negative charge among the azolyl rings, and the blocking of the conjugation by the tetrahedral boron concertedly reduce absorbate–absorbate repulsion, which leads to a large disparity among binding sites in other multiple‐site SO2 sorbents.  相似文献   

2.
3.
A novel method for highly efficient nitric oxide absorption by azole‐based ionic liquid was reported. The NO absorption capacity reached up to 4.52 mol per mol ionic liquid and is significant higher than the capacity other traditional absorbents. Moreover, the absorption of NO by this ionic liquid was reversible. Through a combination of experimental absorption, quantum chemical calculation, NMR and FT‐IR spectroscopic investigation, the results indicated that such high capacity originated from multiple‐site interactions between NO and the anion through the formation of NONOate with the chemical formula R1R2N?(NO?)?N=O, where R1 and R2 are alkyl groups. We believe that this highly efficient and reversible NO absorption by an azole‐based ionic liquid paves a new way for gas capture and utilization.  相似文献   

4.
CO 2 is locked up : Dual amino‐functionalised phosphonium ionic liquids (ILs; see figure) have been prepared. The ILs have excellent thermal properties, such as low glass transition temperatures and high thermal decomposition temperatures. The supported CO2 absorption of four of the ILs on porous SiO2 was found to approach one mol CO2 per mol IL, a factor of two greater than that reported before.

  相似文献   


5.
6.
A new approach has been developed to improve SO2 sorption by cyano‐containing ionic liquids (ILs) through tuning the basicity of ILs and cyano–sulfur interaction. Several kinds of cyano‐containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano‐containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano–sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.  相似文献   

7.
A novel method for the highly efficient and reversible capture of CO in carbanion-functionalized ionic liquids (ILs) by a C-site interaction is reported. Because of its supernucleophilicity, the carbanion in ILs could absorb CO efficiently. As a result, a relatively high absorption capacity for CO (up to 0.046 mol mol−1) was achieved under ambient conditions, compared with CO solubility in a commonly used IL [Bmim][Tf2N] (2×10−3 mol mol−1). The results of quantum mechanical calculations and spectroscopic investigation confirmed that the chemical interaction between the C-site in the carbanion and CO resulted in the superior CO absorption capacities. Furthermore, the subsequent conversion of captured CO into valuable chemicals with good reactivity was also realized through the alkoxycarbonylation reaction under mild conditions. Highly efficient CO absorption by carbanion-functionalized ILs provides a new way of separating and converting CO.  相似文献   

8.
9.
Ionic liquids (ILs), vary strongly in their interaction with CO2. We suggest simple theoretical approach to predict the CO2 absorption behavior of ILs. Strong interaction of the CO2 with the IL anions corresponds to chemical absorption whereas weak interaction indicates physical absorption. A predictive estimate with a clear distinction between physical and chemical absorption can be simply obtained according to geometries optimized in the presence of a solvation model instead of optimizing it only in gas phase as has been done to date. The resulting Gibbs free energies compare very well with experimental values and the energies were correlated with experimental capacities. Promising anions, for ionic liquids with reversible CO2 absorption properties can be defined by a reaction Gibbs free energy of absorption in the range of ?30 to 16 kJ mol?1.  相似文献   

10.
周凌云  樊静  王键吉 《化学进展》2011,23(11):2269-2275
CO2是导致温室效应的最主要成分,因此碳捕集技术的研究受到学术界和产业界的高度重视。离子液体具有不挥发、不燃烧、热稳定性好、溶解能力强、结构和性质可调节并可循环使用等特性,在CO2的吸收/分离领域展现了广阔的应用前景。本文系统地综述了近年来常规离子液体、功能化离子液体、支撑离子液体膜、聚合离子液体以及离子液体与分子溶剂的混合物在捕集CO2方面的研究进展;讨论了离子液体的阳离子结构、阴离子类型、烷基链长度、阴/阳离子的氟化程度和功能化、离子液体的负载作用和聚合效应以及体系的温度和压力对CO2选择性捕集性能的影响;分析了可能的捕集机理以及各种捕集方法的优点和缺点;提出了目前需要进一步研究的若干重要问题,并对其发展前景进行了展望。  相似文献   

11.
A new strategy for multi‐molar absorption of CO2 is reported based on activating a carboxylate group in amino acid ionic liquids. It was illustrated that introducing an electron‐withdrawing site to amino acid anions could reduce the negative inductive effect of the amino group while simultaneously activating the carboxylate group to interact with CO2 very efficiently. An extremely high absorption capacity of CO2 (up to 1.69 mol mol?1) in aminopolycarboxylate‐based amino acid ionic liquids was thus achieved. The evidence of spectroscopic investigations and quantum‐chemical calculations confirmed the interactions between two kinds of sites in the anion and CO2 that resulted in superior CO2 capacities.  相似文献   

12.
基于离子液体固定二氧化碳的研究进展   总被引:2,自引:0,他引:2  
范薇  孙晓霞  苏岩 《化学研究》2009,20(3):101-107
综述了不同种类离子液体吸收固定CO2的研究进展,从离子液体的结构和分子模拟结果探讨了离子液体吸收CO2的机理及特征,展望了功能化离子液体在固定CO2方面的应用前景并分析了其在工业应用中存在的问题.  相似文献   

13.
This work aims to explore the gas permeation performance of two newly-designed ionic liquids, [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2], in supported ionic liquid membranes (SILM) configuration, as another effort to provide an overall insight on the gas permeation performance of functionalized-ionic liquids with the [C2mim]+ cation. [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] single gas separation performance towards CO2, N2, and CH4 at T = 293 K and T = 308 K were measured using the time-lag method. Assessing the CO2 permeation results, [C2mim][CF3BF3] showed an undermined value of 710 Barrer at 293.15 K and 1 bar of feed pressure when compared to [C2mim][BF4], whereas for the [C2mim][CF3SO2C(CN)2] IL an unexpected CO2 permeability of 1095 Barrer was attained at the same experimental conditions, overcoming the results for the remaining ILs used for comparison. The prepared membranes exhibited diverse permselectivities, varying from 16.9 to 22.2 for CO2/CH4 and 37.0 to 44.4 for CO2/N2 gas pairs. The thermophysical properties of the [C2mim][CF3BF3] and [C2mim][CF3SO2C(CN)2] ILs were also determined in the range of T = 293.15 K up to T = 353.15 K at atmospheric pressure and compared with those for other ILs with the same cation and anion’s with similar chemical moieties.  相似文献   

14.
A novel method for the highly efficient and reversible capture of CO in carbanion‐functionalized ionic liquids (ILs) by a C‐site interaction is reported. Because of its supernucleophilicity, the carbanion in ILs could absorb CO efficiently. As a result, a relatively high absorption capacity for CO (up to 0.046 mol mol−1) was achieved under ambient conditions, compared with CO solubility in a commonly used IL [Bmim][Tf2N] (2×10−3 mol mol−1). The results of quantum mechanical calculations and spectroscopic investigation confirmed that the chemical interaction between the C‐site in the carbanion and CO resulted in the superior CO absorption capacities. Furthermore, the subsequent conversion of captured CO into valuable chemicals with good reactivity was also realized through the alkoxycarbonylation reaction under mild conditions. Highly efficient CO absorption by carbanion‐functionalized ILs provides a new way of separating and converting CO.  相似文献   

15.
Protic ionic liquids (PILs), such as 1,8‐diazabicyclo[5.4.0]‐7‐undecenium 2‐methylimidazolide [DBUH][MIm], can catalyze the reaction of atmospheric CO2 with a broad range of propargylic amines to form the corresponding 2‐oxazolidinones. The products are formed in high yields under mild, metal‐free conditions. The cheaper and greener PILs can be easily recycled and reused at least five times without a decrease in the catalytic activity and selectivity. A reaction mechanism was proposed on the basis of a detailed DFT study which indicates that both the cation and anion of the PIL play key synergistic roles in accelerating the reaction.  相似文献   

16.
The potential advantages of applying encapsulated ionic liquid (ENIL) to CO2 capture by chemical absorption with 1‐butyl‐3‐methylimidazolium acetate [bmim][acetate] are evaluated. The [bmim][acetate]‐ENIL is a particle material with solid appearance and 70 % w/w in ionic liquid (IL). The performance of this material as CO2 sorbent was evaluated by gravimetric and fixed‐bed sorption experiments at different temperatures and CO2 partial pressures. ENIL maintains the favourable thermodynamic properties of the neat IL regarding CO2 absorption. Remarkably, a drastic increase of CO2 sorption rates was achieved using ENIL, related to much higher contact area after discretization. In addition, experiments demonstrate reversibility of the chemical reaction and the efficient ENIL regeneration, mainly hindered by the unfavourable transport properties. The common drawback of ILs as CO2 chemical absorbents (low absorption rate and difficulties in solvent regeneration) are overcome by using ENIL systems.  相似文献   

17.
《化学:亚洲杂志》2017,12(21):2863-2872
A new strategy involving the computer‐assisted design of substituted imidazolate‐based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO2 capture, CO2 capture, and SO2/CO2 selectivity was explored. The best substituted imidazolate‐based ILs as absorbents for different applications were first predicted. During absorption, high SO2 capacities up to ≈5.3 and 2.4 mol molIL−1 could be achieved by ILs with the methylimidazolate anions under 1.0 and 0.1 bar (1 bar=0.1 MPa), respectively, through tuning multiple N ⋅⋅⋅ S interactions between SO2 and the N atoms in the imidazolate anion with different substituents. In addition, CO2 capture by the imidazolate‐based ILs could also be easily tuned through changing the substituents of the ILs, and 4‐bromoimidazolate IL showed a high CO2 capacity but a low absorption enthalpy. Furthermore, a high selectivity for SO2/CO2 could be reached by IL with 4,5‐dicyanoimidazolate anion owing to its high SO2 capacity but low CO2 capacity. The results put forward in this work are in good agreement with the predictions. Quantum‐chemical calculations and FTIR and NMR spectroscopy analysis methods were used to discuss the SO2 and CO2 absorption mechanisms.  相似文献   

18.
Fine‐tuning of effective pore size of microporous materials is necessary to achieve precise molecular sieving properties. Herein, we demonstrate that room temperature ionic liquids can be used as cavity occupants for modification of the microenvironment of MOF nanocages. Targeting CO2 capture applications, we tailored the effective cage size of ZIF‐8 to be between CO2 and N2 by confining an imidazolium‐based ionic liquid [bmim][Tf2N] into ZIF‐8’s SOD cages by in‐situ ionothermal synthesis. Mixed matrix membranes derived from ionic liquid‐modified ZIF‐8 exhibited remarkable combinations of permeability and selectivity that transcend the upper bound of polymer membranes for CO2/N2 and CO2/CH4 separation. We observed an unusual response of the membranes to varying pressure, that is, an increase in the CO2/CH4 separation factor with pressure, which is highly desirable for practical applications in natural gas upgrading.  相似文献   

19.
Imidazolium ionic liquids (ILs), imidazolylidene N‐heterocyclic carbenes (NHCs), and zeolitic imidazolate frameworks (ZIFs) are imidazolate motifs which have been extensively investigated for CO2 adsorption and conversion applications. Summarized in this minireview is the recent progress in the capture, activation, and photochemical reduction of CO2 with these three imidazolate building blocks, from homogeneous molecular entities (ILs and NHCs) to heterogeneous crystalline scaffolds (ZIFs). The developments and existing shortcomings of the imidazolate motifs for their use in CO2 utilizations is assessed, with more of focus on CO2 photoredox catalysis. The opportunities and challenges of imidazolate scaffolds for future advancement of CO2 photochemical conversion for artificial photosynthesis are discussed.  相似文献   

20.
Direct spectroscopic evidence for hydrogen‐bonded clusters of like‐charged ions is reported for ionic liquids. The measured infrared O?H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion‐corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like‐charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols. These ionic clusters are mainly present at low temperature and show strong cooperative effects in hydrogen bonding. DFT‐D3 calculations of the pure multiply charged clusters suggest that the attractive hydrogen bonds can compete with repulsive Coulomb forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号