首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unprecedented strategy for in situ generation of indole‐based ortho‐quinodimethanes (oQDMs) from 2‐methyl‐3‐alkylmethylindoles by either a metal‐free DDQ‐ or BQ‐mediated dehydrogenative process was developed. These oQDMs were trapped by electron‐deficient dienophiles to provide a facile approach to synthetically valuable tetrahydrocarbazoles, carbazoles, and hetereoacenes. The salient features of this transformation include direct C(sp3) H bond functionalizations, readily available starting materials, metal‐free conditions, high efficiency, operational simplicity, and ease of scale‐up.  相似文献   

2.
An unprecedented strategy for in situ generation of indole‐based ortho‐quinodimethanes (oQDMs) from 2‐methyl‐3‐alkylmethylindoles by either a metal‐free DDQ‐ or BQ‐mediated dehydrogenative process was developed. These oQDMs were trapped by electron‐deficient dienophiles to provide a facile approach to synthetically valuable tetrahydrocarbazoles, carbazoles, and hetereoacenes. The salient features of this transformation include direct C(sp3)? H bond functionalizations, readily available starting materials, metal‐free conditions, high efficiency, operational simplicity, and ease of scale‐up.  相似文献   

3.
A new series of 3‐(furan‐2‐yl) dibenzo‐diazepin‐1‐one derivatives were synthesized by condensation of 5‐(furan‐2‐yl)‐1,3‐cyclohexanedione, o‐phenylenediamine, and aromatic aldehydes, in which in some of them existed two very close isomer compounds. All the compounds were characterized by IR, MS, 1H NMR, and elemental analysis. Also presented were the crystal structures of 3a , 3b and 3e , which were obtained and determined by X‐ray single‐crystal diffraction.  相似文献   

4.
Two natural diarylheptanoids, 2‐benzyl‐5‐(2‐phenylethyl)furan ( 1 ) and 2‐methoxy‐4‐{[5‐(2‐phenylethyl)furan‐2‐yl]methyl}phenol ( 2 ), were synthesized starting from 2‐furaldehyde. A Wittig reaction of 2‐furaldehyde with benzyltriphenylphosphonium bromide followed by reduction of the alkene C?C bond with Mg gave 2‐(2‐phenylethyl)furan ( 5 ). Lithiation of 5 with BuLi at ?78° followed by alkylation with benzyl bromide gave natural product 1 . In another approach, Friedel? Crafts acylation of compound 5 with benzoyl chloride followed by deoxygenation of the C?O group afforded 1 . The natural product 2 was also synthesized by acylation of 5 with 4‐acetoxy‐3‐methoxybenzoyl chloride ( 16 ) followed by deoxygenation and deacetylation.  相似文献   

5.
N‐2‐amino‐4‐(furan‐2‐yl)‐5,6‐dimethylnicotinonitrile ( 4 ) was utilized as key intermediate for the synthesis of some new, pyridopyrimidine, benzo[1,5][g]oxazocine, naphthoquinone, and isoindole derivatives. The structures of the newly synthesized compounds were confirmed by elemental analysis, IR, 1H‐NMR, and mass spectral data.  相似文献   

6.
A new enantioselective synthesis of furan‐2‐yl amines and amino acids is described, in which the key step is the oxazaborolidine‐catalyzed enantioselective reduction of O‐benzyl (E) and (Z)‐furan‐2‐yl ketone oximes to the corresponding chiral amines. The chirality of the furan‐2‐yl amines is fully controlled by the appropriate choice of the geometrical isomer of the O‐benzyl oxime. Oxidation of the furan ring furnished amino acids in high yields.  相似文献   

7.
The 3‐aminotropones (=3‐aminocyclohepta‐2,4,6‐trien‐1‐ones) 4 were prepared in two steps by i) a [4+3] cycloaddition reaction between a conveniently substituted α,α′‐dihalo ketone 1 and a furan‐2‐amine derivative 2 functionalized at C(2) by a protected amino group (→ 3 ), and ii) a base‐induced molecular rearrangement of the cycloadduct 3 via cleavage of the O‐bridge. A mechanism for the formation of 3‐aminotropones is proposed on the basis of the initial deprotonation of the [(tert‐butoxy)carbonyl]amino (BocNH) group of 3 , followed by O‐bridge opening, an acid–base equilibrium, and finally an alkoxyaluminate elimination to afford the conjugated stable troponoid system (Scheme 7).  相似文献   

8.
A series of novel 3‐(2‐(substituted phenyl)hydrazinylmethylidene)furan‐2,4(3H,5H)‐diones were designed and synthesized with ethyl 4‐chloroacetoacetate as the starting material. Their structures were confirmed by FT‐IR, 1H NMR, 13C NMR, EI‐MS and elemental analysis. Bioassay data demonstrated that these compounds exhibited remarkable antifungal activity against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis and Colletotrichum capsici. Compound 3‐(2‐(4‐bromophenyl)hydrazinylmethylidene)furan‐2,4(3H,5H)‐dione ( 5g ) had excellent bioactivity against Botrytis cinerea with an EC50 value of 0.18 μg/mL ‐ markedly lower than the 0.24 μg/mL of the commercial fungicide procymidone. The result revealed that introducing the halogenated phenylhydrazine at the 3‐position of furan‐2,4(3H, 5H)‐dione was an effective way to design new tetronic acid derivatives as new fungicides.  相似文献   

9.
张元  辛志君  薛吉军  李瀛 《中国化学》2008,26(8):1461-1464
本文报道了一种以邻炔基苯酚为原料,通过金催化的炔烃羟基化反应合成2取代苯并呋喃的方法. 该方法可以在温和的条件下快速以高产率得到各种2取代苯并呋喃. 关键前体邻炔基苯酚可以很容易由Sonogashira 反应制备.  相似文献   

10.
Functionalized 3,4‐dihalogenated furan‐2(5 H)‐ones can be readily prepared in moderate to good yields by treating 4‐hydroxy‐4‐arylbut‐2‐ynoate derivatives with ICl, IBr, and I2. Both halogen atoms of the electrophile are incorporated in the product. The resulting halides can further afford polycyclic aromatic compounds using known palladium‐catalyzed coupling reactions.  相似文献   

11.
Cyclization of 2‐furan‐2‐yl‐4‐mercapto‐6‐methylpyrimidine‐5‐carbonitrile 1 with ethyl chloroacetate gave o‐aminoester thienopyrimidine derivative 3 , which was reacted with a variety of reagents to give a series of novel thienopyrimidines including tetrazolyl thienopyrimidine, pyrrolylthienopyrimidine, pyrimidothienotriazine, and thienodipyrimidines. Some of the synthesized compounds were tested for their antibacterial activities against Gram‐positive and Gram‐negative bacteria.  相似文献   

12.
Lactone analogues of 3‐substituted oxindoles (=1,3‐dihydro‐2H‐indol‐2‐ones) and nonbenzoid oxa‐analogous isoindigoid or nonbenzoid isoindigoid dyes were prepared by the reactions of furan‐2,3‐diones with oxindole and Lawesson reagent (Schemes 1 and 3), respectively. So, new derivatives of 2‐oxobutanoic acid, bis‐furanone, and bis‐pyrrolone, which are potentially biologically active compounds, were synthesized for the first time.  相似文献   

13.
A novel one‐pot approach for the preparation of 2‐mercaptobenzaldehyde, 2‐mercaptocyclohex‐1‐enecarboxaldehydes and 3‐mercaptoacrylaldehydes [(Z)‐3‐mercapto‐2‐methyl‐3‐phenylacrylaldehyde, 3‐mercapto‐3‐(o‐tolyl)acrylaldehyde)] starting from ortho‐bromobenzaldehyde, 2‐chlorocyclohex‐1‐enecarbaldehydes, (Z)‐3‐chloro‐2‐methyl‐3‐phenylacrylaldehyde and 3‐chloro‐3‐(o‐tolyl)acrylaldehyde is reported. The reaction of sulfur with the Grignard reagent of the acetal for the protection of the aldehyde group affords the title compounds through hydrolysis with dilute hydrochloric acid in high yields.  相似文献   

14.
New highly cytotoxic 1‐{3‐[1‐(5‐organylsilyl‐furan‐2‐yl)silinan‐1‐yl]propyl}amines and some trimethylgermyl analogues (IC50 1–7 μg mL?1) have been synthesized by a hydrosilylation reaction of aliphatic and heterocyclic N‐allylamines in the presence of Speier’s catalyst. The effects of the silacycle, the element‐organic substituent in position 5 of the furan ring, and the structure of the amine on the cytotoxicity of the new compounds have been studied.  相似文献   

15.
A Cu(I)‐catalyzed three‐component reaction of terminal enynals/enynones, diazo compounds, and alkenes has been developed. With this method, a series of oxabicyclo[2.2.2]octanes were effectively synthesized in high yields under mild reaction conditions. This transformation is proposed to proceed through trapping of the cyclic vinyl‐o‐quinodimethanes (vinyl‐o‐QDMs) species, which were generated from terminal enynals/enynones and diazo compounds by alkenes. The obvious advantages of wide substrate scopes, mild reaction conditions, and high seteroselectivity and atom efficiency make this reaction highly appealing for construction of highly rigid [2.2.2]octane skeleton.  相似文献   

16.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

17.
The title compound 3,3′‐[o‐phenyl­enebis­(methyl­eneoxy)]­bis(6‐chloro­flavone), C38H24Cl2O6, (I), crystallizes in the monoclinic space group C2/c, with the molecules lying across twofold rotation axes so that there is half a mol­ecule in the asymmetric unit, while the other title compound, 3,3′‐propyl­ene­dioxy­bis­[6‐chloro‐2‐(2‐furyl)‐4H‐1‐benzopyran‐4‐one], C29H18Cl2O8, (II), crystallizes in monoclinic space group P21/n with one mol­ecule in the asymmetric unit. In both compounds, the benzopyran moiety is nearly planar, with dihedral angles between the two fused rings of 1.43 (8)° in (I), and 2.54 (7) and 3.00 (6)° with respect to the benzopyran moieties in the two halves of (II). The furan rings are twisted by 8.3 (1) and 8.4 (1)° in the two halves of (II). In both compounds, the molecular structure is stabilized by intramolecular C—H⃛O hydrogen bonds, while the crystal packing is stabilized by C—H⃛Cl and C—H⃛O intermolecular hydrogen bonds in (I) and (II), respectively.  相似文献   

18.
Diels‐Alder reaction of 2‐(E‐2‐nitroethenyl)‐1H‐pyrrole ( 2a ) with 1,4‐benzoquinone gave the desired benzo[e]indole‐6, 9(3H)‐dione ( 4a ) in 10% yield versus a 26% yield (lit. 86% [5]) of the known N‐methyl compound ( 4b ) from the N‐(or 1)‐methyl compound ( 2b ). Protection of the nitrogen of 2a with a phenylsul‐fonyl group ( 2c ) gave a 9% yield of the corresponding N‐(or 3)‐phenylsulfonyl compound ( 4c ). The reaction of 2b with 1,4‐naphthoquinone gave in 6% yield (lit. 64% [5]) the known 3‐methylnaphtho[2,3‐e]‐indole‐6, 9(3H)‐dione ( 6 ). The reaction of 2‐(E‐2‐nitroethenyl)furan ( 8a ) gave a small yield of the desired naphtho[2,1‐b]furan‐6, 9‐dione ( 9a ), recognized by comparing its NMR spectrum with that of 4b. The corresponding reaction of 2‐(E‐2‐nitroethenyl)thiophene ( 8b ) gave a 4% yield of naphtho[2,1‐ b ]thiophene‐6,9‐dione ( 9b ), previously prepared in 24% yield [12] in a three‐step procedure involving 2‐ethenylthiophene. Introducing an electron‐releasing 2‐methyl substituent into 8a and 8b gave 12a and 12b , which, upon reaction with 1,4‐benzoquinone, gave 2‐methylnaphtho[2,1‐b]furan‐6, 9‐dione ( 13a ) and its sulfur analog ( 13b ) in yields of 4 and 8%, respectively.  相似文献   

19.
The polymerization of a new polar diene‐based monomer 2‐(2‐methylidenebut‐3‐enyl)furan (MBEF) without masking is achieved by using the bis(phosphino)carbazoleide‐ligated yttrium (Y) alkyl complex upon the activation of [Ph3C][B(C6F5)4]. Under mild conditions, the polymerizations under the monomer‐to‐Y ratios ranging from 100:1 to 500:1 perform fluently in high yields. The afforded polydienes bearing pendant terminal furan groups have high cis‐1,4‐regularity up to 98.6% and molecular weights close to the theoretic values and narrow polymer dispersity index(PDI) (1.13–1.17) suggesting a livingness polymerization mode. In addition, this novel polydiene is an excellent building block for preparing functional rubber materials. For example, via Diels–Alder addition of furan groups under mild conditions, hydroxyl groups are successfully introduced on the side chains efficiently in a 75% conversion. Furthermore, the copolymerization of polar MBEF and nonpolar isoprene is also successfully realized by the bis(phosphino) carbazoleide‐ligated scandium analog to access furan‐modified cis‐1,4 (>97%) polyisoprene with different MBEF contents (5.3%, 8.7%).  相似文献   

20.
The reaction of 2‐acylamino‐4,5‐dihydro‐3‐furancarbonitriles 1 with sodium iodide in N,N‐dimethyl‐formamide gave the corresponding 1‐acyl‐2‐oxo‐3‐pyrrolidinecarbonitriles 2 in good yields. Successive treatment of 1 with titanium(IV) chloride and potassium carbonate resulted in the formation of N‐acyl‐1‐cyanocyclopropanecarboxamides 4 . The same compounds 2 were also obtained by treatment of 4 with sodium iodide. The starting compounds 1 were synthesized by the reaction of 2‐amino‐4,5‐dihydro‐3‐furan‐carbonitrile with acyl chlorides in pyridine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号