共查询到20条相似文献,搜索用时 15 毫秒
1.
Bastian Brugger Stephan Rütten Kim‐Ho Phan Dr. Martin Möller Prof. Walter Richtering Prof. 《Angewandte Chemie (International ed. in English)》2009,48(22):3978-3981
Oil on troubled waters : Stimuli‐sensitive emulsions have been used to prepare temperature‐ and pH‐responsive microgels. The emulsion stability at oil–water interfaces is not governed by the particle packing density, and structural changes induced by the interface lead to connections between the individual microgels (see picture; scale bar 1 μm), which behave very differently compared to solid‐particle‐stabilized emulsions.
2.
Man Fai Leung Junmin Zhu Frank W. Harris Pei Li 《Macromolecular rapid communications》2004,25(21):1819-1823
Summary: A new method has been developed to prepare smart polymeric microgels that consist of well‐defined temperature‐sensitive cores with pH‐sensitive shells. The microgels were obtained directly from aqueous graft copolymerizations of N‐isopropylacrylamide and N,N‐methylenebisacrylamide from water‐soluble polymers containing amino groups such as poly(ethyleneimine) and chitosan. The gel diameters ranged from 300 to 400 nm. The unique core‐shell nanostructures, which had narrow size distributions, exhibited tuneable responses to pH and temperature.
3.
Rong Liu Bin He Dong Li Yusi Lai James. Z. Tang Zhongwei Gu 《Macromolecular rapid communications》2012,33(12):1061-1066
Methoxy poly(ethylene glycol)–poly(L ‐histidine)–poly(lactide) (mPEG45–PH30–PLA82) triblock copolymers self‐assemble into nanoparticles by sterocomplexation. The properties of the stereocomplex nanoparticles including morphology, stability, and biocompatibility are investigated. The results reveal that the stereocomplexation between PLLA and PDLA segments could prevent the aggregation of the nanoparticles when the pH value is around 6.8. The mean diameter of the stereocomplex nanoparticles is stabilized at about 100 nm when the pH values are changed from 7.9 to 5.0. The cytotoxicity of the stereocomplex nanoparticles is evaluated, and the results demonstrate that the stereocomplexation could decrease the cytotoxicity of the PDLA segments. 相似文献
4.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs. 相似文献
5.
Kadriye Özlem Nazli Christian W. Pester Artjom Konradi Prof. Dr. Alexander Böker Dr. Patrick van Rijn 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(18):5586-5594
SiO2–PNIPAAm core–shell microgels (PNIPAAm=poly(N‐isopropylacrylamide)) with various internal cross‐linking densities and different degrees of polymerization were prepared in order to investigate the effects of stability, packing, and temperature responsiveness at polar–apolar interfaces. The effects were investigated using interfacial tensiometry, and the particles were visualized by cryo‐scanning electron microscopy (SEM) and scanning force microscopy (SFM). The core–shell particles display different interfacial behaviors depending on the polymer shell thickness and degree of internal cross‐linking. A thicker polymer shell and reduced internal cross‐linking density are more favorable for the stabilization and packing of the particles at oil–water (o/w) interfaces. This was shown qualitatively by SFM of deposited, stabilized emulsion droplets and quantitatively by SFM of particles adsorbed onto a hydrophobic planar silicon dioxide surface, which acted as a model interface system. The temperature responsiveness, which also influences particle–interface interactions, was investigated by dynamic temperature protocols with varied heating rates. These measurements not only showed that the particles had an unusual but very regular and reversible interface stabilization behavior, but also made it possible to assess the nonlinear response of PNIPAAm microgels to external thermal stimuli. 相似文献
6.
7.
Synthesis of Monodisperse Bi‐Compartmentalized Amphiphilic Janus Microparticles for Tailored Assembly at the Oil–Water Interface 下载免费PDF全文
Jeong Won Kim Jangwoo Cho Jaehong Cho Prof. Bum Jun Park Yong‐Jin Kim Kyung‐Ho Choi Prof. Jin Woong Kim 《Angewandte Chemie (International ed. in English)》2016,55(14):4509-4513
Janus particles endowed with controlled anisotropies represent promising building blocks and assembly materials because of their asymmetric functionalities. Herein, we show that using the seeded monomer swelling and polymerization technique allows us to obtain bi‐compartmentalized Janus microparticles that are generated depending on the phase miscibility of the poly (alkyl acrylate) chains against the polystyrene seed, thus minimizing the interfacial free energy. When tetradecyl acrylate is used, complete compartmentalization into two distinct bulbs can be achieved, while tuning the relative dimension ratio of compartmented bulb against the whole particle. Finally, we have demonstrated that selectively patching the silica nanoparticles onto one of the bulb surfaces gives amphiphilicity to the particles that can assemble at the oil–water interface with a designated level of adhesion, thus leading to development of a highly stable Pickering emulsion system. 相似文献
8.
Luc Piot Dr. Robert M. Meudtner Dipl.‐Chem. Tamer El Malah M. Sc. Stefan Hecht Prof. Dr. Paolo Samorì Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(19):4788-4792
Dynamic surfaces : The conformational transition of 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (BTP) derivatives, triggered by a change in pH, has been observed with a sub‐nm resolution by STM at the solid–liquid interface. Upon addition of trifluoroacetic acid two different BTP molecules, each forming a highly ordered physisorbed monolayer, underwent significant conformational changes from their “rosette” to their “tetragon” forms, as reflected in dramatically altered 2D self‐assembly over large areas extending over hundreds of nanometers (see graphic).
9.
Novel positive thermosensitive microgels of poly(acrylamide–acrylic acid) with embedded gold nanoparticles have been synthesized and characterized by means of dynamic light scattering, UV‐vis spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. These systems show temperature (upper critical solution temperature‐like volume phase transition) and optical responsiveness making them externally triggered systems.
10.
Zhengguang Zhu Na Xu Qiuping Yu Lei Guo Hui Cao Xinhua Lu Yuanli Cai 《Macromolecular rapid communications》2015,36(16):1521-1527
Simultaneous coordination‐association and electrostatic‐repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self‐assembly of artificial aqueous polymer single‐chain nanoparticles (SCNPs). Herein, the construction and self‐assembly of dative‐bonded aqueous SCNPs are reported via simultaneous coordination‐association and electrostatic‐repulsion interactions within single chains of histamine‐based hydrophilic block copolymer. The electrostatic‐repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)‐coordination leads to the intramolecular association and single‐chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative‐bonded block and steric shielding of nonionic water‐soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media‐sensitive phase‐transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme‐inspired smart aqueous catalysts.
11.
Surface functionalization of the plasma‐pretreated polycarbonate (PC) track‐etched membranes via plasma‐induced thermally graft copolymerization of acrylic acid (AAc) was carried out. The resulting PC membranes with grafted AAc side chains were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis. The morphology of the PC membranes was studied by scanning electron microscopy (SEM). The results showed that the grafted PAAc polymers were formed uniformly inside the pores throughout the entire membrane thickness. With increase in the pore‐filling ratio, the pore diameters of PAAc‐grafted membranes became smaller. The PC‐g‐PAAc membranes exhibit rapid and reversible response of the flux to the environmental pH as pH is switched between 3 and 9. Between pH 3.5 and 5.5, the membranes demonstrate a pH‐valve function as the carboxyl group changes from neutral to charged with a corresponding variation in chain configuration. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
13.
Dr. Daisuke Ishikawa Dr. Taizo Mori Dr. Yusuke Yonamine Dr. Waka Nakanishi Dr. David L. Cheung Dr. Jonathan P. Hill Prof. Katsuhiko Ariga 《Angewandte Chemie (International ed. in English)》2015,54(31):8988-8991
Gradual and reversible tuning of the torsion angle of an amphiphilic chiral binaphthyl, from ?90° to ?80°, was achieved by application of a mechanical force to its molecular monolayer at the air–water interface. This 2D interface was an ideal location for mechanochemistry for molecular tuning and its experimental and theoretical analysis, since this lowered dimension enables high orientation of molecules and large variation in the area. A small mechanical energy (<1 kcal mol?1) was applied to the monolayer, causing a large variation (>50 %) in the area of the monolayer and modification of binaphthyl conformation. Single‐molecule simulations revealed that mechanical energy was converted proportionally to torsional energy. Molecular dynamics simulations of the monolayer indicated that the global average torsion angle of a monolayer was gradually shifted. 相似文献
14.
A pH‐responsive core cross‐linked star (CCS) polymer containing poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1‐9.3, ordinary water‐in‐oil emulsions were formed. Intermediate multiple emulsions of oil‐in‐water‐in‐oil and water‐in‐oil‐in‐water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil‐in‐water type in the pH range of 6.4‐0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH.
15.
Ainara Imaz Jacqueline Forcada 《Journal of polymer science. Part A, Polymer chemistry》2008,46(8):2766-2775
New microgel particles produced by using N‐vinylcaprolactam (VCL) and poly(ethylene glycol) diacrylate (PEGDA) or N,N′‐methylenbisacrylamide (BA) were synthesized in a batch reactor. The influence of the concentration and type of crosslinker on polymerization kinetics and colloidal characteristics of such temperature‐sensitive particles was studied. The partial and total conversion evolutions of VCL, PEGDA, and BA were determined by quantitative 1H NMR and the average diameters of microgel particles together with the swelling–deswelling behavior were analyzed by means of photon correlation spectroscopy (PCS). Partial and total conversions, final average diameters at collapsed state, and the swelling–deswelling behavior varied as a function of the type of crosslinker. These results were attributed to the higher solubility and stabilizing ability of PEGDA compared with that of BA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2766–2775, 2008 相似文献
16.
pH‐Modulated Molecular Assemblies and Surface Properties of Metal–Organic Supercontainers at the Air–Water Interface 下载免费PDF全文
Nathan L. Netzer Dr. Feng‐Rong Dai Prof. Zhenqiang Wang Prof. Chaoyang Jiang 《Angewandte Chemie (International ed. in English)》2014,53(41):10965-10969
The orientation of metal–organic supercontainer (MOSC) molecules in Langmuir films was systematically studied at the air–water interface. The acidity of the aqueous subphases plays a significant role in tuning the orientation of MOSC molecules in the Langmuir films. Furthermore, Langmuir–Blodgett films of MOSCs were prepared and the uniform multilayer structures demonstrated various surface properties, depending on their conditions of fabrication. Our use of Langmuir films provides a novel approach to access tunable assemblies of MOSC molecules in two‐dimensional thin films. 相似文献
17.
Qingsong Zhang Liusheng Zha Jinghong Ma Borun Liang 《Macromolecular rapid communications》2007,28(1):116-120
Adopting inorganic clay (hectorite) and MBA as physical and chemical cross‐linking agents, respectively, PNIPAM microgels were synthesized by SFEP. The chemical structure and morphology of the microgels were confirmed by FTIR, WXRD, and SEM. The temperature‐sensitivity of the microgels was investigated by DLS and UV spectrophotometers. The results inferred that clay platelets dispersed in an aqueous medium were fully exfoliated and could act as a kind of multifunctional cross‐linking agent and significantly reduced the hydrodynamic diameters of the microgels. In fact, the hydrodynamic diameters of the PNIPAM microgels with clay as cross‐linker ranged from 154 to 322 nm which was much smaller than that using MBA as chemical cross‐linker, the later was in the range of 284–808 nm on heating from 5 to 50 °C.
18.
19.
20.
Selva Çavuş 《Journal of Polymer Science.Polymer Physics》2010,48(23):2497-2508
Novel poly(methacrylamide‐co‐2‐acrylamido‐2‐methyl‐ 1‐propanesulfonic acid) (poly(MAAm‐co‐AMPS)) hydrogels were synthesized by free radical polymerization of methacrylamide (MAAm) and 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid (AMPS) in deionized water at 60 °C by using ammonium peroxydisulfate (APS), N,N′‐methylenebisacrylamide (MBAAm) and N,N,N′,N′‐tetramethylethylenediamine (TEMED) as initiator, crosslinker, and activator, respectively. To investigate the effects of feed content on the pH‐ and temperature‐dependent swelling behavior of poly(MAAm‐co‐AMPS), molar ratio of MAAm to AMPS in feed was varied from 90/10 to 10/90. Structural characterization of gels was performed by Fourier transform infrared (FTIR) spectroscopy using attenuated total reflectance (ATR) technique. Thermal and morphological characterizations of gels were performed by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Although an apparent pH‐sensitivity was not observed for the poly(MAAm‐co‐AMPS) gels during the swelling in different buffer solutions, their temperature‐sensitivity became more evident with the increase in AMPS content of copolymer. Thermal stability of poly(MAAm‐co‐AMPS) gels increased with MAAm content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献