首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stretchable wire‐shaped lithium‐ion battery is produced from two aligned multi‐walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg?1 or 17.7 mWh cm?3 and power densities of 880 W kg?1 or 0.56 W cm?3, which are an order of magnitude higher than the densities reported for lithium thin‐film batteries. These wire‐shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire‐shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large‐scale applications.  相似文献   

2.
Using a copper wire as the substrate for the CVD growth of a hollow multilayer graphene tube, we prepared a macroscopic porous graphene fiber by removing the copper in an aqueous mixture solution of iron chloride (FeCl3, 1 M ) and hydrochloric acid (HCl, 3 M ) and continuously drawing the newly released graphene tube out of the liquid. The length of the macroscopic graphene fiber thus produced is determined mainly by the length of the copper wire used. The resultant macroscopic graphene fiber with the integrated graphene structure exhibited a high electrical conductivity (127.3 S cm?1) and good flexibility over thousands bending cycles, showing great promise as flexible electrodes for wearable optoelectronics and energy devices—exemplified by its use as a flexible conductive wire for lighting a LED and a cathode in a fiber‐shaped dye‐sensitized solar cell (DSSC) with one of the highest energy conversion efficiencies (3.25 %) among fiber‐shaped DSSCs.  相似文献   

3.
The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual‐gas diffusion electrode H2/O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer‐based high‐current‐density H2‐oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm?2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer‐based biofuel cell with outstanding power densities of 5.4 mW cm?2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2.  相似文献   

4.
Two well‐defined alternating π‐conjugated polymers containing a soluble electroactive benzo[1,2‐b:4,5‐b′]difuran (BDF) chromophore, poly(BDF‐(9‐phenylcarbazole)) (PBDFC), and poly(BDF‐benzothiadiazole) (PBDFBTD) were synthesized via Sonogashira copolymerizations. Their optical, electrochemical, and field‐effect charge transport properties were characterized and compared with those of the corresponding homopolymer PBDF and random copolymers of the same overall composition. All these polymers cover broad optical absorption ranges from 250 to 750 nm with narrow optical band gaps of 1.78–2.35 eV. Both PBDF and PBDFBTD show ambipolar redox properties with HOMO levels of ?5.38 and ?5.09 eV, respectively. The field‐effect mobility of holes varies from 2.9 × 10?8 cm2 V?1 s?1 in PBDF to 1.0 × 10?5 cm2 V?1 s?1 in PBDFBTD. Bulk heterojunction solar cell devices were fabricated using the polymers as the electron donor and [6,6]‐phenyl‐C61‐butyric acid methyl ester as the electron acceptor, leading to power conversion efficiencies of 0.24–0.57% under air mass 1.5 illumination (100 mW cm?2). These results indicate that their band gaps, molecular electronic energy levels, charge mobilities, and molecular weights are readily tuned by copolymerizing the BDF core with different π‐conjugated units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

6.
ipso‐Arylative ring‐opening polymerization of 2‐bromo‐8‐aryl‐8H‐indeno[2,1‐b]thiophen‐8‐ol monomers proceeds to Mn up to 9 kg mol?1 with conversion of the monomer diarylcarbinol groups to pendent conjugated aroylphenyl side chains (2‐benzoylphenyl or 2‐(4‐hexylbenzoyl)phenyl), which influence the optical and electronic properties of the resulting polythiophenes. Poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to have lower frontier orbital energy levels (HOMO/LUMO=?5.9/?4.0 eV) than poly(3‐hexylthiophene) owing to the electron‐withdrawing ability of the aryl ketone side chains. The electron mobility (ca. 2×10?3 cm2 V?1 s?1) for poly(3‐(2‐(4‐hexylbenzoyl)phenyl)thiophene) was found to be significantly higher than the hole mobility (ca. 8×10?6 cm2 V?1 s?1), which suggests such polymers are candidates for n‐type organic semiconductors. Density functional theory calculations suggest that backbone distortion resulting from side‐chain steric interactions could be a key factor influencing charge mobilities.  相似文献   

7.
For Li‐Se batteries, ether‐ and carbonate‐based electrolytes are commonly used. However, because of the “shuttle effect” of the highly dissoluble long‐chain lithium polyselenides (LPSes, Li2Sen, 4≤n≤8) in the ether electrolytes and the sluggish one‐step solid‐solid conversion between Se and Li2Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile‐based electrolyte is introduced for the Li‐Se system, and a two‐plateau conversion mechanism is proposed. This new Li‐Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm?3) with a record‐breaking Se content (80 wt %) and high Se loading (8 mg cm?2) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L?1, surpassing that of LiCoO2.  相似文献   

8.
Conjugated molecules with low lying LUMO levels are demanding for the development of air stable n‐type organic semiconductors. In this paper, we report a new A‐D‐A′‐D‐A conjugated molecule ( DAPDCV ) entailing diazapentalene (DAP) and dicyanovinylene groups as electron accepting units. Both theoretical and electrochemical studies manifest that the incorporation of DAP unit in the conjugated molecule can effectively lower the LUMO energy level. Accordingly, thin film of DAPDCV shows n‐type semiconducting behavior with electron mobility up to 0.16 cm2?V?1?s?1 after thermal annealing under N2 atmosphere. Moreover, thin film of DAPDCV also shows stable n‐type transporting property in air with mobility reaching 0.078 cm2?V?1?s?1.  相似文献   

9.
Layered p‐block metal chalcogenides are renowned for thermoelectric energy conversion due to their low thermal conductivity caused by bonding asymmetry and anharmonicity. Recently, single crystalline layered SnSe has created sensation in thermoelectrics due to its ultralow thermal conductivity and high thermoelectric figure of merit. Tin diselenide (SnSe2), an additional layered compound belonging to the Sn‐Se phase diagram, possesses a CdI2‐type structure. However, synthesis of pure‐phase bulk SnSe2 by a conventional solid‐state route is still remains challenging. A simple solution‐based low‐temperature synthesis is presented of ultrathin (3–5 nm) few layers (4–6 layers) nanosheets of Cl‐doped SnSe2, which possess n‐type carrier concentration of 2×1018 cm?3 with carrier mobility of about 30 cm2 V?1 s?1 at room temperature. SnSe2 has a band gap of about 1.6 eV and semiconducting electronic transport in the 300–630 K range. An ultralow thermal conductivity of about 0.67 Wm?1 K?1 was achieved at room temperature in a hot‐pressed dense pellet of Cl‐doped SnSe2 nanosheets due to the anisotropic layered structure, which gives rise to effective phonon scattering.  相似文献   

10.
Thick, uniform, easily processed, highly conductive polymer films are desirable as electrodes for solar cells as well as polymer capacitors. Here, a novel scalable strategy is developed to prepare highly conductive thick poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (HCT‐PEDOT:PSS) films with layered structure that display a conductivity of 1400 S cm?1 and a low sheet resistance of 0.59 ohm sq?1. Organic solar cells with laminated HCT‐PEDOT:PSS exhibit a performance comparable to the reference devices with vacuum‐deposited Ag top electrodes. More importantly, the HCT‐PEDOT:PSS film delivers a specific capacitance of 120 F g?1 at a current density of 0.4 A g?1. All‐solid‐state flexible symmetric supercapacitors with the HCT‐PEDOT:PSS films display a high volumetric energy density of 6.80 mWh cm?3 at a power density of 100 mW cm?3 and 3.15 mWh cm?3 at a very high power density of 16160 mW cm?3 that outperforms previous reported solid‐state supercapacitors based on PEDOT materials.  相似文献   

11.
Two small molecules named BT‐TPD and TBDT‐TTPD with a thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) unit were designed and synthesized for solution‐processed bulk‐heterojunction solar cells. Their thermal, electrochemical, optical, charge‐transport, and photovoltaic characteristics were investigated. These compounds exhibit strong absorption at 460–560 nm and low highest occupied molecular orbital levels (?5.36 eV). Field‐effect hole mobilities of these compounds are 1.7–7.7×10?3 cm2 V?1 s?1. Small‐molecule organic solar cells based on blends of these donor molecules and a acceptor display power conversion efficiencies as high as 4.62 % under the illumination of AM 1.5G, 100 mW cm?2.  相似文献   

12.
We report a simple approach based on a chemical reduction method to synthesize aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long‐term stability and continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, the MnO2 ink was printed onto commercially available A4 paper pretreated with multiwalled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 1035 F g?1 (91.7 mF cm?2). Paper‐based symmetric and asymmetric capacitors were assembled, which gave a maximum specific energy density of 25.3 Wh kg?1 and a power density of 81 kW kg?1. The device could maintain a 98.9 % capacitance retention over 10 000 cycles at 4 A g?1. The MnO2 ink could be a versatile candidate for large‐scale production of flexible and printable electronic devices for energy storage and conversion.  相似文献   

13.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

14.
Cost‐effective and high‐performance electrocatalysts for oxygen reduction reactions (ORR) are needed for many energy storage and conversion devices. Here, we demonstrate that whey powder, a major by‐product in the dairy industry, can be used as a sustainable precursor to produce heteroatom doped carbon electrocatalysts for ORR. Rich N and S compounds in whey powders can generate abundant catalytic active sites. However, these sites are not easily accessible by reactants of ORR. A dual‐template method was used to create a hierarchically and interconnected porous structure with micropores created by ZnCl2 and large mesopores generated by fumed SiO2 particles. At the optimum mass ratio of whey power: ZnCl2 : SiO2 at 1 : 3 : 0.8, the resulting carbon material has a large specific surface area close to 2000 m2 g?1, containing 4.6 at.% of N with 39.7% as pyridinic N. This carbon material shows superior electrocatalytic activity for ORR, with an electron transfer number of 3.88 and a large kinetic limiting current density of 45.40 mA cm?2. They were employed as ORR catalysts to assemble primary zinc‐air batteries, which deliver a power density of 84.1 mW cm?2 and a specific capacity of 779.5 mAh g?1, outperforming batteries constructed using a commercial Pt/C catalyst. Our findings open new opportunities to use an abundant biomaterial, whey powder, to create high‐value‐added carbon electrocatalysts for emerging energy applications.  相似文献   

15.
Two‐dimensional conjugated aromatic networks (CAN) with ultra‐thin conjugated layers (ca. 3.5 nm) and high single‐metal‐atom‐site density (mass content of 10.7 wt %, and 0.73 metal atoms per nm2) are prepared via a facile pyrolysis‐free route involving a one‐step ball milling of the solid‐phase‐synthesized polyphthalocyanine. These materials display outstanding oxygen reduction reaction (ORR) mass activity of 47 mA mgcat.?1 represents 1.3‐ and 6.4‐fold enhancements compared to Pt and Pt/C in benchmark Pt/C, respectively. Moreover, the primary Zn‐air batteries constructed with CAN as an air electrode demonstrate a mass/volume power density of 880 W gcat.?1/615 W cmcat.?3 and stable long‐term operation for 100 h. This strategy offers a new way to design high‐performance electrocatalysts with atomic precision for use in other energy‐storage and conversion applications.  相似文献   

16.
Two donor–acceptor conjugated polymers, PTSSO‐TT and PTSSO‐BDT, composed of acenaphtho[1,2‐c]thiophene ‐ S,S‐dioxide (TSSO) as a new electron acceptor and thienothiophene (TT) or benzo[1,2‐b:4,5‐b']dithiophene (BDT) as electron donors, were synthesized with Stille cross‐coupling reactions. The number‐averaged molecular weights (Mn) of PTSSO‐TT and PTSSO‐BDT were found to be 15100 and 26000 Da, with dispersity of 1.8 and 2.4, respectively. The band‐gap energies of PTSSO‐TT and PTSSO‐BDT are 1.56 and 1.59 eV, respectively. The HOMO levels of PTSSO‐TT and PTSSO‐BDT are ?5.4 and ?5.5 eV, respectively. These results indicate that the inclusion of TSSO accepting units into polymers is a very effective method for lowering their HOMO energy levels. The field‐effect mobilities of PTSSO‐TT and PTSSO‐BDT were determined to be 1.5 × 10?3 and 4.5 × 10?4 cm2 V?1 s?1, respectively. A polymer solar cell device prepared with PTSSO‐TT as the active layer was found to exhibit a power conversion efficiency (PCE) of 3.79% with an open circuit voltage of 0.71 V under AM 1.5 G (100 mW cm?2) conditions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 498–506  相似文献   

17.
The vacuum‐UV (VUV)‐induced conversion of commercially available poly(1,1‐dimethylsilazane‐co‐1‐methylsilazane) into methyl‐Si‐O‐Si networks was studied using UV sources at wavelengths around 172, 185, and 222 nm, respectively. Time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS), X‐ray photo electron spectroscopy (XPS), and Fourier transform infrared (FTIR) measurements, as well as kinetic investigations, were carried out to elucidate the degradation process. First‐order kinetics were found for the photolytically induced decomposition of the Si? NH‐Si network, the subsequent formation of the methyl‐Si‐O‐Si network and the concomitant degradation of the Si? CH3 bond, which were additionally independent of the photon energy above a threshold of about 5.5 eV (225 nm). The kinetics of these processes were, however, dependent on the dose actually absorbed by the layer and, in the case of Si‐O‐Si formation, additionally on the oxygen concentration. The release of ammonia and methane accompanied the conversion process. Quantum‐chemical calculations on methyl substituted cyclotetrasilazanes as model compounds substantiate the suggested reaction scheme. Layers <100 nm in thickness based on mixtures of poly(1,1‐dimethylsilazane‐co‐1‐methylsilazane) and perhydropolysilazane (PHPS) were coated onto polyethylene terephthalate (PET) foils by a continuous roll to roll process and cured by VUV irradiation by using wavelengths <200 nm and investigated for their O2 and water vapor‐barrier properties. It was found that the resulting layers displayed oxygen and water vapor transmission rates (OTR and WVTR, respectively) of <1 cm3 m?2 d?1 bar?1 and <4 g m?2 d?1, respectively.  相似文献   

18.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   

19.
Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm?2 at 4 mA cm?2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm?2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg?1 at 674 W kg?1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm?2. These superior properties hold great promise for energy‐storage applications.  相似文献   

20.
We report a novel multicomponent mixed‐valence oxyhydroxide‐based electrode synthesized by electrochemical polarization of a de‐alloyed nanoporous NiCuMn alloy. The multicomponent oxyhydroxide has a high specific capacitance larger than 627 F cm?3 (1097±95 F g?1) at a current density of 0.25 A cm?3, originating from multiple redox reactions. More importantly, the oxyhydroxide electrode possesses an extraordinarily wide working‐potential window of 1.8 V in an aqueous electrolyte, which far exceeds the theoretically stable window of water. The realization of both high specific capacitance and high working‐potential windows gives rise to a high energy density, 51 mWh cm?3, of the multicomponent oxyhydroxide‐based supercapacitor for high‐energy and high‐power applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号