首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Supramolecular hydrogels are a class of self‐assembled network structures formed via non‐covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol–gel and/or gel–sol transition upon subtle changes in their surroundings. Such stimuli‐responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli‐responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self‐assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.  相似文献   

2.
Autofluorescent microcapsules were assembled by covalent cross‐linking of polysaccharide alginate dialdehyde (ADA) derivative and cystamine dihydrochloride (CM) through a layer‐by‐layer (LBL) technique. The formulated Schiff base and disulfide bonds render capsules with pH‐ and redox‐responsive properties for pinpointed intracellular delivery based on the physiological difference between intracellular and extracellular environments. This simple and versatile method could be extended to other polysaccharide derivatives for the fabrication of autofluorescent nano‐ and micromaterials with dual stimuli response for biomedical applications.  相似文献   

3.
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.  相似文献   

4.
Stimuli‐responsive materials are of immense importance because of their ability to undergo alteration of their properties in response to their environment. The properties of such materials can be tuned by subtle adjustments in temperature, pH, light, and so forth. Among such smart materials, multi‐stimuli‐responsive polymeric materials are of pronounced significance as they offer a wide range of applications and their properties can be tuned through several mechanisms. Here, we aim to highlight some recent studies showcasing the multi‐stimuli‐responsive character of these polymers, which are still relatively little known compared to their single‐stimuli‐responsive counterpart.  相似文献   

5.
《中国化学》2018,36(7):594-598
Using coinage metal (Cu(II), Ag(I)) hinges, two sets of heterometallic molecular capsules with analogous open‐ended cavities were prepared based on the half‐sandwich rhodium fragments. In the case of [Rh4Cu4] cages, up to six‐fold‐stacked host‐guest structures were formed by varying the cavity's dimensions. Moreover, the series of capsules were demonstrated to self‐fine‐tune to form multi‐heteroguest arrays via favourable donor‐acceptor π interactions and Ag‐π interactions, as evidenced from single‐crystal X‐ray analysis.  相似文献   

6.
Microgel capsules are micrometer‐sized particles that consist of a cross‐linked, solvent‐swollen polymer network complexed with additives. These particles have various applications, such as drug delivery, catalysis, and analytics. To optimize the performance of microgel capsules, it is crucial to control their size, shape, and content of encapsulated additives with high precision. There are two classes of microgel‐capsule structures. One class comprises bulk microcapsules that consist of a polymer network spanning the entire particle and entrapping the additive within its meshes. The other class comprises core–shell structures; in this case, the microgel polymer network just forms the shell of the particles, whereas their interior is hollow and hosts the encapsulated payload. Both types of structures can be produced with exquisite control by droplet‐based microfluidic templating followed by subsequent droplet gelation. This article highlights some early and recent achievements in the use of this technique to tailor soft microgel capsules; it also discusses applications of these particles. A special focus is on the encapsulation of living cells, which are very sensitive and complex but also very useful additives for immobilization within microgel particles.  相似文献   

7.
Stimuli‐responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi‐stimuli‐responsive polymer materials have been designed and developed in recent years. Compared with conventional single‐ or dual‐stimuli‐based polymer materials, multi‐stimuli‐responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi‐stimuli‐responsive polymer materials, namely, multi‐stimuli‐responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi‐stimuli‐responsive films (polymer brushes, layer‐by‐layer polymer films, and porous membranes), and multi‐stimuli‐responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi‐stimuli‐responsive particles, films, and bulk gels are comprehensively discussed here.  相似文献   

8.
Colloidal microcapsules (MCs) are highly modular, inherently multiscale constructs of capsules stabilized by nano‐/microparticle shells, with applications in many areas of materials and biological sciences, such as drug delivery, encapsulation, and microreactors. Until recently, fabrication of colloidal MCs focused on the use of submicron‐sized particles because the smaller nanoparticles (NPs) are inherently unstable at the interface owing to thermal disorder. However, stable microcapsules can now be obtained by tuning the interactions between the nanometer‐sized building blocks at the liquid–liquid interface. This Review highlights recent developments in the fabrication of colloidal MCs using NPs.  相似文献   

9.
A novel Se/C nanocomposite with core‐shell structures has been prepared through a facile one‐pot microwave‐induced hydrothermal process. The new material consists of a trigonal‐Se (t‐Se) core and an amorphous‐C (a‐C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. These products were characterized by transmission electron microscopy (TEM), powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), selected area electron diffraction (SAED), energy‐dispersive X‐ray (EDX) spectroscopy, and X‐ray photoelectron spectroscopy (XPS).  相似文献   

10.
Dumbbell‐shaped amphiphiles based on an elongated rod segment can self‐assemble into planar networks with in‐plane hexagonally ordered pores in aqueous solution. On increasing temperature, the 2D networks change into hollow capsules passing through the closed sheets as an intermediate structure due to a LCST behavior of the oligoether dendritic exterior. The primary driving force for this interesting feature seems to originate from a consequence of the energy balance between hydrophobic interactions of anisotropic rod segments and alkyl chains, and repulsive interactions between dissimilar blocks. This dynamic structural variation triggered by external stimuli in a self‐assembling system can provide a useful strategy to create smart supramolecular materials and biomimetic systems.

  相似文献   


11.
Controllable and sensitive perception of environmental changes is essential for the development of smart material and device systems. Herein, a multi‐stimuli sensitive responsor has been fabricated on the base of the established double‐helix core‐sheath graphene‐based microfibers (GFs). By combining the tunable conductivity and mechanical robustness of GF coated with graphitic carbon nitride (GF@GCN), a fibriform smart environmental responsor (SER) is prepared by water‐assisted GFs‐twisting strategy, which can accordingly present conductive state‐dependent current responses upon exposure to a variety of stimuli. More importantly, this SER exhibits high current response to small perturbations induced by temperature variations, mechanical interactions, and relative humidity changes, thereby achieving an environmental perceptibility. Based on this finding, a multi‐functional respiratory monitor has been built under the stimuli of the human breath.  相似文献   

12.
Controllable and sensitive perception of environmental changes is essential for the development of smart material and device systems. Herein, a multi‐stimuli sensitive responsor has been fabricated on the base of the established double‐helix core‐sheath graphene‐based microfibers (GFs). By combining the tunable conductivity and mechanical robustness of GF coated with graphitic carbon nitride (GF@GCN), a fibriform smart environmental responsor (SER) is prepared by water‐assisted GFs‐twisting strategy, which can accordingly present conductive state‐dependent current responses upon exposure to a variety of stimuli. More importantly, this SER exhibits high current response to small perturbations induced by temperature variations, mechanical interactions, and relative humidity changes, thereby achieving an environmental perceptibility. Based on this finding, a multi‐functional respiratory monitor has been built under the stimuli of the human breath.  相似文献   

13.
14.
Polymeric capsules with an aqueous core have great potential for a wide range of applications, for example food/biomedical applications. However, synthesis of such capsules often involves the use of toxic organic solvents. Herein, an organic solvent‐free approach is developed for the synthesis of polymeric microcapsules with an aqueous core. The method is based on RAFT polymerization of divinyl monomer around the periphery of inverse emulsion water droplets acting as templates, with an amphiphilic macroRAFT species fulfilling the dual roles of RAFT agent and colloidal stabilizer. Vegetable oils, which are non‐toxic and renewable, are used as the continuous phase of these inverse emulsions, which are prepared using membrane emulsification to control the emulsion droplet size and size distribution. Relatively monodisperse emulsions with tunable droplet size in the range of approximately 10–30 µm are prepared, followed by the RAFT polymerization step to generate polymeric microcapsules having similar size as the initial droplets. This approach will be beneficial for various applications where toxic solvents need be minimized or removed completely to avoid adverse effects. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 831–839  相似文献   

15.
Photo/pH dual‐responsive amphiphilic diblock copolymers with alkyne functionalized pendant o‐nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide‐alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid‐sensitive Schiff‐base linkage. The resultant prodrug copolymers self‐assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well‐defined morphology with an average size of 20–40 nm. The dual‐stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light‐controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH‐sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual‐stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual‐stimuli‐response have significant potential applications as a smart nanomedicine against cancer.  相似文献   

16.
Developing multicolor upconversion nanoparticles (UCNPs) with the capability of regulating their emission wavelengths in the UV to visible range in response to external stimuli can offer more dynamic platforms for applications in high‐resolution bioimaging, multicolor barcoding, and driving multiple important photochemical reactions, such as photoswitching. Here, we have rationally designed single‐crystal core–shell‐structured UCNPs which are capable of orthogonal UV and visible emissions in response to two distinct NIR excitations at 808 and 980 nm. The orthogonal excitation–emission properties of such UCNPs, as well as their ability to utilize low‐power excitation, which attenuates any local heating from the lasers, endows the UCNPs with great potential for applications in materials and biological settings. As a proof of concept, the use of this UCNP for the efficient regulation of the two‐way photoswitching of spiropyran by using dual wavelengths of NIR irradiation has been demonstrated.  相似文献   

17.
The efficient internalization of TGF‐beta inhibitor‐loaded polyelectrolyte capsules and particles is studied in two HCC cell lines. Two polyelectrolyte pairs (biocompatible but not degradable and biodegradable crosslinked with gluteraldehyde) are employed for coating. The capsules are characterized by SEM. LY is successfully loaded inside the core and embedded between polymer layers. MS is used to quantify the loading efficiency by comparing post‐loading and core‐loading methods, since both coated templates and hollow shells are used as carriers. CLSM confirms dissolution of the pre‐formed multilayer upon enzymatic degradation as the method of release, and migration assays demonstrate a higher inhibition efficiency of TGF‐beta in tailored biodegradable capsules compared to free LY administration.

  相似文献   


18.
A strategy to expand anti‐Stokes shifting from the far‐red to deep‐blue region in metal‐free triplet–triplet annihilation upconversion (TTA‐UC) is presented. The method is demonstrated by in vivo titration of the photorelease of an anticancer prodrug. This new TTA system has robust brightness and the longest anti‐Stokes shift of any reported TTA system. TTA core–shell‐structured prodrug delivery capsules that benefit from these properties were developed; they can operate with low‐power density far‐red light‐emitting diode light. These capsules contain mesoporous silica nanoparticles preloaded with TTA molecules as the core, and amphiphilic polymers encapsulating anticancer prodrug molecules as the shell. When stimulated by far‐red light, the intense TTA upconversion blue emission in the system activates the anticancer prodrug molecules and shows effective tumor growth inhibition in vivo. This work paves the way to new organic TTA upconversion techniques that are applicable to in vivo photocontrollable drug release and other biophotonic applications.  相似文献   

19.
Supramolecular materials, in which small organic molecules are assembled into regular structures by non‐covalent interactions, attract tremendous interests because of their highly tunable functional groups and porous structure. Supramolecular adsorbents are expected to fully expose their abundant adsorptive sites in a dynamic framework. In this contribution, we introduced cucurbit[6]uril as a supramolecular capsule for reversible storage/delivery of mobile polysulfides in lithium‐sulfur (Li‐S) batteries to control undesirable polysulfide shuttle. The Li‐S battery equipped with the supramolecular capsules retains a high Coulombic efficiency and shows a large increase in capacity from 300 to 900 mAh g−1 at a sulfur loading of 4.2 mg cm−2. The implementation of supramolecular capsules offers insights into intricate multi‐electron‐conversion reactions and manifests as an effective and efficient strategy to enhance Li‐S batteries and analogous applications that involve complex transport phenomena and intermediate manipulation.  相似文献   

20.
Stimuli‐responsive polymer nanoparticles are playing an increasingly more important role in drug delivery applications. However, limited knowledge has been accumulated about processes which use stimuli‐responsive polymer nanospheres (matrix nanoparticles whose entire mass is solid) to carry and deliver hydrophobic therapeutics in aqueous solution. In this research, pyrene was selected as a model hydrophobic drug and a pyrene‐loaded core‐shell structured nanosphere named poly(DEAEMA)‐poly(PEGMA) was designed as a drug carrier where DEAEMA and PEGMA represent 2‐(diethylamino)ethyl methacrylate and poly(ethylene glycol) methacrylate, respectively. The pyrene‐loaded core‐shell nanospheres were prepared via an in situ two‐step semibatch emulsion polymerization method. The particle size of the core‐shell nanosphere can be well controlled through adjusting the level of surfactant used in the polymerization where an average particle diameter of below 100 nm was readily achieved. The surfactant was removed via a dialysis operation after polymerization. Egg lecithin vesicles (liposome) were prepared to mimic the membrane of a cell and to receive the released pyrene from the nanosphere carriers. The in vitro release profiles of pyrene toward different pH liposome vesicles were recorded as a function of time at 37 °C. It was found that release of pyrene from the core‐shell polymer matrix can be triggered by a change in the environmental pH. In particular the pyrene‐loaded nanospheres are capable of responding to a narrow window of pH change from pH = 5, 6, to 7 and can achieve a significant pyrene release of above 80% within 90 h. The rate of release increased with a decrease in pH. A first‐order kinetic model was proposed to describe the rate of release with respect to the concentration of pyrene in the polymer matrix. The first‐order rate constant of release k was thus determined as 0.049 h?1 for pH = 5; 0.043 h?1 for pH = 6; and 0.035 h?1 for pH = 7 at 37 °C. The release of pyrene was considered to follow a diffusion‐controlled mechanism. The synthesis and encapsulation process developed herein provides a new approach to prepare smart nanoparticles for efficient delivery of hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4440–4450  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号