首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Conventional melt transesterification successfully produced high‐molecular‐weight segmented copolyesters. A rigid, high‐Tg polyester precursor containing the cycloaliphatic monomers, 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol, and dimethyl‐1,4‐cyclohexane dicarboxylate allowed molecular weight control and hydroxyl difunctionality through monomer stoichiometric imbalance in the presence of a tin catalyst. Subsequent polymerization of a 4000 g/mol polyol with monomers comprising the low‐Tg block yielded high‐molecular‐weight polymers that exhibited enhanced mechanical properties compared to a nonsegmented copolyester controls and soft segment homopolymers. Reaction between the polyester polyol precursor and a primary or secondary alcohol at melt polymerization temperatures revealed reduced transesterification of the polyester hard segment because of enhanced steric hindrance adjacent to the ester linkages. Differential scanning calorimetry, dynamic mechanical analysis, and tensile testing of the copolyesters supported the formation of a segmented multiblock architecture. Further investigations with atomic force microscopy uncovered unique needle‐like, interconnected, microphase separated surface morphologies. Small‐angle X‐ray scattering confirmed the presence of microphase separation in the segmented copolyesters bulk morphology. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Understanding the effect of repulsive interaction between blocks on crystallization in block copolymers is beneficial for the design and development of sophisticated nanostructures. Dynamic Monte Carlo simulations were performed to reveal the crystallization mechanism of block copolymers containing one‐dimensional nanofiller under different repulsive interaction strengths between crystallizable and noncrystallizable blocks. During crystallization, crystalline morphology is determined by the competition between segmental orientation perpendicular to microphase interfaces dominated by microphase separation and that along the direction of the long axis of the nanofiller controlled by interfacial interaction. As the repulsive interaction between different blocks is strengthened, the competition between microphase separation and interfacial interaction is intensified, eventually leading to an increase in crystallization rate and a degradation in crystalline morphology. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1516–1526  相似文献   

3.
The crystallization‐dominated and microphase separation/crystallization‐coexisted structure of the all‐conjugated diblock copolymers poly(2,5‐dihexyloxy‐p‐phenylene)‐block‐(3‐hexylthiophene) (PPP‐b‐P3HT, denoted as BmTn) with different block compositions was affected by the aggregation state of the diblock copolymers in solvents with different solubilities. For B34T66, B62T38, and B75T25, the coexistence of microphase separation and crystallization was obtained in good solvent with few crystalline aggregates. For B34T66 with a longer P3HT block, densely stacked fiber crystal structures in thin films were found by using marginal solvents with crystalline aggregations in solutions. As for B62T38 and B75T25 with shorter P3HT block and longer PPP block, crystal structures were obtained by the use of solvents with a much larger solubility difference of the two blocks. Thus, microphase‐separated structures are prone to form from solutions with coil conformation and fiber crystals from solutions with larger aggregates, which resulted in the increased crystallinity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1718–1726  相似文献   

4.
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.  相似文献   

5.
The formation of channel membrane of polystyrene‐block‐poly(4‐vinyl pyridine) block copolymer is studied by computer simulations with the nonsolvent induced phase separation (SNIPS) method. Dissipative particle dynamics is employed to study the microphase separation process and the SNIPS mechanism. Simulation results indicate that polymer concentration has a significant effect on the membrane structure. Channel membranes form in the copolymer concentration range of 44–58%. Block ratio plays an important role in shaping the membrane structure. Solvent exchange rate also affects the degree of microphase separation at each evolution stage of simulation. The time evolution of morphologies shows that the microphase separation processes happen with the following sequences: the polymer self‐assembled and many small pores appear, then they form irregular cavities and cross‐link gradually, finally the channel membrane forms. These results throw light on the formation mechanism of polymer membranes and provide insightful guidance for future membrane design and preparation.  相似文献   

6.
A simple theoretical treatment of microphase separation in block copolymers [S. Krause, Macromolecules, 3 , 84 (1970)] has been extended to the case in which individual molecules of the block copolymer may dissolve in one or the other of the microphases. When the free energy driving force for microphase separation is near zero, the minimum free energy state of the system has a relatively high concentration of block copolymer molecules dissolved in one or in both of the microphases, depending partly on the percent composition of the block copolymer. The theoretical predictions are compared with experimental data in the literature.  相似文献   

7.
Trithiocarbonate group was introduced into the polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymers as the junction of the blocks through RAFT polymerization. Mixed PS and PEO brushes with a V-shape were prepared by anchoring the trithiocarbonate group on the planar gold substrate. The morphology of the V-shaped brushes was characterized by atomic force microscopy (AFM) and the surface composition responsive to solvent treatment was detected by X-ray photoelectron spectroscopy (XPS). Different morphologies were observed for the V-shaped PS-b-PEO brushes, depending on the chain structure and solvent treatment. The highly selective solvent for PEO, ethanol, can intensify or induce microphase separation of the V-shaped brushes, leading to vertical microphase separation. When the V-shaped brushes are treated with the co-solvent, THF, miscible morphology, lateral microphase separation, and vertical microphase separation are observed as the PS block length increases. After treatment with the non-selective poor solvent, cyclohexane, the V-shaped PS(106)-b-PEO(113) brush, exhibits a laterally microphase-separated morphology, but the V-shaped PS(52)-b-PEO(113) and PS(253)-b-PEO(113) brushes are vertically microphase-separated.  相似文献   

8.
A novel six‐arm star block copolymer comprising polystyrene (PS) linked to the center and π‐conjugated poly (3‐hexylthiophene) (P3HT) was successfully synthesized using a combination of atom transfer radical polymerization (ATRP) and click reaction. First, star‐shaped PS with six arms was prepared via ATRP of styrene with the discotic six‐functional initiator, 2,3,6,7,10,11‐hexakis(2‐bromoisobutyryloxy)triphenylene. Next, the terminal bromides of the star‐shaped PS were substituted with azide groups. Afterward, the six‐arm star block copolymer PS‐b‐P3HT was prepared using the click coupling reaction of azide‐terminated star‐shaped PS with alkynyl‐terminated P3HT. Various techniques including 1H NMR, Fourier‐transform infrared and size‐exclusion chromatography were applied to characterize the chemical structures of the intermediates and the target block copolymers. Their thermal behaviors and optical properties were investigated using differential scanning calorimetry and UV–vis spectroscopy. Moreover, atomic force microscopy (AFM) was utilized to observe the morphology of the star block copolymer films. In comparison with two linear diblock copolymer counterparts, AFM results reveal the effect of the star block copolymer architecture on the microphase separation‐induced morphology in thin films. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
报导了系列聚四氢呋喃-聚甲基丙烯酸甲酯结晶-非晶(硬段型)两嵌段共聚物的结晶行为,结果表明,其微相分离和结晶规律与文献上唯一进行过系统研究的同类嵌段共聚物(PEO-b-PS)都有较大的差别;结晶段结晶能力的大小是制约这类体系微相分离和结晶规律的一个重要因素.  相似文献   

10.
The phase behaviors of comblike block copolymer A(m+1)B(m)/homopolymer A mixtures are studied by using the random phase approximation method and real-space self-consistent field theory. From the spinodals of macrophase separation and microphase separation, we can find that the number of graft and the length of the homopolymer A have great effects on the phase behavior of the blend. For a given composition of comblike block copolymer, increasing the number of graft does not change the macrophase separation spinodal curve but decreases the microphase separation region. The addition of a small quantity of long-chain homopolymer A increases the microphase separation of comblike block copolymer/homopolymer A mixture. However, the addition of short-chain homopolymer A will decrease the phase separation region of comblike block copolymer/homopolymer A mixture. It is also found that the microstructure formed by diblock copolymer is easier to be swelled by homopolymer than that formed by comblike block copolymer. This can be attributed to the architecture difference between the comblike block copolymer and linear block copolymer.  相似文献   

11.
EBE and BEB triblock copolymers were prepared and characterized. Microphase separation in the melt state was studied, and the results combined with those for EB and BEB copolymers reported previously. The microphase separation temperature (MST) was determined from the temperature dependence of SAXS. There was a large difference in MST between the diblock and triblock copolymers as expected from theory. The Flory‐Huggins parameter (χ) was independent of block architecture for all three series provided that the E block lengths in the EBE copolymers exceeded 65.  相似文献   

12.
接枝共聚物聚苯乙烯-g-聚氧乙烯的微相分离形态研究   总被引:3,自引:0,他引:3  
 本文利用透射电子显微镜技术,以两性接校共聚物聚苯乙烯-g-聚氧乙烯为研究对象,研究了接枝共聚物的微相分离形态结构,发现聚苯乙烯-g-聚氧乙烯能形成微相分离结构,微区的形状和尺寸与共聚物的组成和侧链长度有关.文中还讨论了嵌段共聚物和接枝共聚物在形成微相分离结构时的共性和个性.  相似文献   

13.
接枝共聚物聚苯乙烯-g-聚氧乙烯的微相分离形态研究   总被引:2,自引:0,他引:2  
本文利用透射电子显微镜技术,以两性接校共聚物聚苯乙烯-g-聚氧乙烯为研究对象,研究了接枝共聚物的微相分离形态结构,发现聚苯乙烯-g-聚氧乙烯能形成微相分离结构,微区的形状和尺寸与共聚物的组成和侧链长度有关.文中还讨论了嵌段共聚物和接枝共聚物在形成微相分离结构时的共性和个性.  相似文献   

14.
梳型嵌段共聚物微观相分离的耗散粒子动力学模拟   总被引:3,自引:2,他引:1  
利用耗散粒子动力学(Dissipative particle dynamics, DPD)模拟方法研究了二维梳型嵌段共聚物的微观相分离, 得到了相形貌与侧链长度及链段间相互作用的依赖关系, 进一步与线型和星型嵌段共聚物微观相分离进行了对比. 模拟结果揭示了本体中影响梳形嵌段共聚物微观相分离的主要因素, 包括嵌段共聚物的组成\, 拓扑结构以及不同粒子间的排斥力.  相似文献   

15.
We have generalized and applied the microscopic polymer reference interaction site model theory to study intermolecular pair correlation functions and collective structure factors of concentrated solutions and melts of spherical nanoparticles carrying one, two, or four tethered polymer chains. A complex interplay of entropy (translational, conformational, and packing) and enthalpy (particle-particle attraction) leads to different structural arrangements with distinctive small- and wide-angle scattering signatures. Strong concentration fluctuations indicative of aggregate formation and/or a tendency for microphase separation occur as the total packing fraction and/or particle-particle attraction strength increase. In analogy with block copolymers, the microphase spinodal curve is estimated by extrapolation of the inverse of the amplitude of the small-angle scattering peak. As the number of tethered chains on nanoparticles increases, the microphase separation boundary spinodal occurs at higher particle-particle attraction strength or lower temperature. For nanoparticles with two tethers, increasing the angle between the attached chains shifts the microphase spinodal to lower temperatures. For nanoparticles with four tethers, the structural correlations are insensitive to various symmetric placements. The tendency for microphase transition is enhanced upon asymmetrically placing all four tethers on one side of the particle due to the high anisotropy of steric hindrance.  相似文献   

16.
The self-assembly of a binary mixture of polystyreneblock-polybutadiene (SB) and poly(methyl vinyl ether) (PVME) was studied by transmission electron microscopy and time-resolved light scattering. The self-assembly studied involved first microphase separation, in which a microdomain structure composed of polybutadiene block chains (PB) was formed in a matrix composed of polystyrene block chains (PS) and PVME homopolymers, and subsequently macrophase separation of the PVME from the microdomain phase of SB. The microphase separation was induced in a film preparation process using a solution cast method at room temperature. The macrophase separation was induced by rapidly heating the film specimens to above a critical temperature where PVME and PS undergo spinodal decomposition (SD). This complex phase transition, involving microphase separation followed by macrophase separation, was found to generate a superlattice structure (or a modulated structure) with two characteristic spacings: Amacro associated with the SD and Amicro associated with the microphase separation, both being generally time-dependent. The growth of the “macrodomains” was found to be pinned at Amacro ˜ 840 nm due to the elastic effect of the microdomain structure. The microdomain structure with Amicro ˜ 57 nm was found to undergo a morphological transition (a transition between two ordered phases of block copolymers) as a consequence of the local composition change of the two polymers induced by the SD.  相似文献   

17.
Cell dynamics simulations are a powerful tool to simulate kinetic processes in phase separating systems. Here we review the technique and its application to block copolymers. Its advantages and disadvantages compared to other simulation methods for block copolymer structure and dynamics are reviewed. Results on the dynamics of microphase separation and interface propagation, and on the rate of order‐order phase transitions are reviewed. The use of the method to model certain shear‐induced structural and flow effects is also summarised.  相似文献   

18.
利用动态密度泛函(Dynamic density functional theory, DDFT)方法研究了三维受限下嵌段共聚物的微观相分离, 讨论了共聚物链长和表面吸附强度对微观相形成与取向的影响. 体系中随机分布的等径微球提供三维限制结构, 体积分数为0.6. 增加微球的半径和体积分数, 能够使其从破坏微相规整结构的纳米掺杂过渡到提供三维限制结构. 调整嵌段共聚物与微球表面的相互作用对微相形成与取向有重要影响.  相似文献   

19.
In this contribution, we reported the synthesis of a hyperbranched block copolymer composed of poly(ε‐caprolactone) (PCL) and polystyrene (PS) subchains. Toward this end, we first synthesized an α‐alkynyl‐ and ω,ω′‐diazido‐terminated PCL‐b‐(PS)2 macromonomer via the combination of ring‐opening polymerization and atom transfer radical polymerization. By the use of this AB2 macromonomer, the hyperbranched block copolymer (h‐[PCL‐b‐(PS)2]) was synthesized via a copper‐catalyzed Huisgen 1,3‐dipolar cycloaddition (i.e., click reaction) polymerization. The hyperbranched block copolymer was characterized by means of 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Both differential scanning calorimetry and atomic force microscopy showed that the hyperbranched block copolymer was microphase‐separated in bulk. While this hyperbranched block copolymer was incorporated into epoxy, the nanostructured thermosets were successfully obtained; the formation of the nanophases in epoxy followed reaction‐induced microphase separation mechanism as evidenced by atomic force microscopy, small angle X‐ray scattering, and dynamic mechanical thermal analysis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 368–380  相似文献   

20.
We report the effect of microphase‐separated structure on the mechanical and thermal properties of several poly(1,3‐cyclohexadiene‐block‐butadiene‐block‐1,3‐cyclohexadiene) triblock copolymers (PCHD‐block‐PBd‐block‐PCHD) and of their hydrogenated derivatives: poly(cyclohexene‐block‐ethylene/butylene‐block‐cyclohexene) triblock copolymers (PCHE‐block‐PEB‐block‐PCHE). Both mechanical strength and heat‐resistant temperature (ex. Vicat Softening Temperature: VSPT) tended to increase with an increase in the 1,3‐cyclohexadiene (CHD)/butadiene ratio. On the other hand, heat resistance of the hydrogenated block copolymer was found to be higher than that of the unhydrogenated block copolymer. However, the mechanical strength was lower than those of the unhydrogenated block copolymer with the same ratio of CHD to butadiene. To clarify the relationship between the higher order structures of those block copolymers and their properties, we observed the microphase‐separated structure by transmission electron microscope (TEM). Hydrogenated block copolymers were found to have more finely dispersed microphase‐separated structures than those of the unhydrogenated block copolymers with the same CHD/Bd ratios through the use of TEM and the small‐angle X‐ray scattering (SAXS) technique. Those results indicated that the segregation strength between the PCHE block sequence and the PEB block sequence increased, depending on hydrogenation of the unhydrogenated precursor. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 13–22, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号