首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Unlike other variants of transition‐metal‐catalyzed cross‐coupling reactions, those based on organosilicon donors have not been used extensively in natural product synthesis. However, recent advances such as: 1) the development of mild reaction conditions, 2) the expansion of substrate scope, 3) the development of methods to stereoselectively and efficiently introduce the silicon‐containing moiety, 4) the development of a large number of sequential processes, and 5) the advent of bifunctional bis(silyl) linchpin reagents, signify the coming of age of silicon‐based cross‐coupling reactions. The following case studies illustrate how silicon‐based cross‐coupling reactions play a strategic role in constructing carbon–carbon bonds in selected target molecules.  相似文献   

2.
The coupling of similarly polarized carbon fragments can be achieved by a reductive umpolung strategy. This gives access to compounds with functional groups in even bond distances, which are difficult to synthesize by other means. Low‐valent titanium catalysts enable such couplings under mild conditions. This account covers the recent progress on this topic with a focus on the development of cross‐selective coupling reactions and stereoselective examples.  相似文献   

3.
The carbon‐carbon and carbon‐heteroatom bonds catalytic formation is among the most significant reactions in organic synthesis which extensively applied for synthesis of natural products, heterocycles, dendrimers, biologically active molecules and useful compounds. This review provides the latest advances in the preparation of graphene supported metal nanoparticles and their application in the catalytic formation of both carbon‐carbon (C−C) and carbon‐heteroatom (C−X) bonds including the Suzuki, Heck, Hiyama, Ullmann, Buchwald and Sonogashira coupling reactions. Numerous examples are given concerning the use of these catalysts in C−C and C−X coupling reactions along with the reliable and simple preparation methods of these catalysts, their characterization and catalytic properties and also the recycling possibilities.  相似文献   

4.
The merging of photoredox and transition‐metal catalysis has become one of the most attractive approaches for carbon–carbon bond formation. Such reactions require the use of two organo‐transition‐metal species, one of which acts as a photosensitizer and the other one as a cross‐coupling catalyst. We report herein an exogenous‐photosensitizer‐free photocatalytic process for the formation of carbon–carbon bonds by direct acceleration of the well‐known nickel‐catalyzed Negishi cross‐coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross‐coupling chemistry that involve the direct visible‐light absorption of organometallic catalytic complexes.  相似文献   

5.
The Hiyama cross‐coupling reaction is a powerful method for carbon–carbon bond formation. To date, the substrate scope of this reaction has predominantly been limited to sp2–sp2 coupling reactions. Herein, the palladium‐catalysed Hiyama type cross‐coupling of vinyldisiloxanes with benzylic and allylic bromides, chlorides, tosylates and mesylates is reported. A wide variety of functional groups were tolerated, and the synthetic utility of the methodology was exemplified through the efficient total synthesis of the cytotoxic natural product bussealin A. In addition, the antiproliferative ability of bussealin A was evaluated in two cancer‐cell lines.  相似文献   

6.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

7.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

8.
Cross‐coupling reactions, namely, the Suzuki–Miyaura, Heck, Sonogashira, Hiyama, Negishi, Kumada, and Hartwig–Buchwald, are the most powerful approaches in the formation of C–C, C–N, C–O, and C–S bonds for the complex organic scaffolds in drugs, natural products, organic materials, and fine chemicals. The nitrogen‐based ligands have upper hands in these reactions because they are air stable, inexpensive, and easier to handle than the phosphorous counterparts. In this perspective, Schiff bases and N‐heterocyclic carbenes have been explored extensively in terms of novel design and preparation as ligands in the coupling reactions. Facile recovery and reusability of these ligands make them eco‐friendly and economical. A comprehensive outline on the progress in Schiff bases–metal complexes and NHC–metal complexes that mediated cross‐coupling reactions with recent examples highlighted is reported (160 references).  相似文献   

9.
The first cross‐coupling reaction between aryl silanes and aryl boronic acids is described. This transformation represents one of the very few examples of coupling reactions between two nucleophilic organometallic reagents and provides a new method for the formation of biaryl compounds. The successful development of this reaction was enabled by the use of commercially available 2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl (BINAP) as the ligand. A small amount of BINAP (3 mol %) was sufficient to suppress the formation of the homocoupling products, and the reaction yielded the cross‐coupling products with high selectivity under mild conditions, even when the ratio of the two coupling partners was 1:1.  相似文献   

10.
The development of palladium‐catalyzed cross‐coupling reactions has revolutionized the synthesis of organic molecules on both bench‐top and industrial scales. While significant research effort has been directed toward evaluating how modifying various reaction parameters can influence the outcome of a given cross‐coupling reaction, the design and implementation of novel ancillary ligand frameworks has played a particularly important role in advancing the state‐of‐the‐art. This Review seeks to highlight notable examples from the recent chemical literature, in which newly developed ancillary ligands have enabled more challenging substrate transformations to be addressed with greater selectivity and/or under increasingly mild conditions. Throughout, the importance and subtlety of ligand effects in palladium‐catalyzed cross‐coupling reactions are described, in an effort to inspire further development and understanding within the field of ancillary ligand design.  相似文献   

11.
The development of ecofriendly methods for carbon–carbon (C?C) and carbon–heteroatom (C?Het) bond formation is of great significance in modern‐day research. Metal‐free cross‐dehydrogenative coupling (CDC) has emerged as an important tool for organic and medicinal chemists as a means to form C?C and C?Het bonds, as it is atom economical and more efficient and greener than transition‐metal catalyzed CDC reactions. Molecular iodine (I2) is recognized as an inexpensive, environmentally benign, and easy‐to‐handle catalyst or reagent to pursue CDCs under mild reaction conditions, with good regioselectivities and broad substrate compatibility. This review presents the recent developments of I2‐catalyzed C?C, C?N, C?O, and C?S/C?Se bond‐forming reactions for the synthesis of various important organic molecules by cross‐dehydrogenative coupling.  相似文献   

12.
Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen‐containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross‐coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity.  相似文献   

13.
An efficient CuPd nanoparticle (NP) catalyst (3 nm CuPd NPs deposited on carbon support) is designed for catalyzing electrochemical allylic alkylation in water/isopropanol (1:1 v/v) and 0.2 m KHCO3 solution at room temperature. The Pd catalysis was Pd/Cu composition‐dependent, and CuPd NPs with a Pd/Cu ratio close to one are the most efficient catalyst for the selective cross‐coupling of alkyl halides and allylic halides to form C?C hydrocarbons with product yields reaching up to 99 %. This NP‐catalyzed electrochemical allylic alkylation expands the synthetic scope of cross‐coupling reactions and can be further extended to other organic reaction systems for developing green chemistry electrosynthesis methods.  相似文献   

14.
Bromoenynamides represent precursors to a diversity of azacycles by a cascade sequence of carbopalladation followed by cross‐coupling/electrocyclization, or reduction processes. Full details of our investigations into intramolecular ynamide carbopalladation are disclosed, which include the first examples of carbopalladation/cross‐coupling reactions using potassium organotrifluoroborate salts; and an understanding of factors influencing the success of these processes, including ring size, and the nature of the coupling partner. Additional mechanistic observations are reported, such as the isolation of triene intermediates for electrocyclization. A variety of hetero‐Diels–Alder reactions using the product heterocycles are also described, which provide insight into Diels–Alder regioselectivity.  相似文献   

15.
The first example of a Liebeskind–Srogl cross‐coupling reaction in water as sole reaction solvent is reported. 2‐(Methylthio)pyridine and 2‐(methylthio)benzothiazole were reacted in the presence of a Pd(0) catalyst and copper(I) thiophene‐2‐carboxylate with a series of arylboronic acids. These cross coupling reactions in water proceeded well with electron‐rich boronic acids and gave comparable yields to literature examples using organic solvents. Electron‐poor boronic acids gave somewhat lower yields in aqueous medium.  相似文献   

16.
Reaction conditions for the C? C cross‐coupling of O6‐alkyl‐2‐bromo‐ and 2‐chloroinosine derivatives with aryl‐, hetaryl‐, and alkylboronic acids were studied. Optimization experiments with silyl‐protected 2‐bromo‐O6‐methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4‐dioxane as the best conditions for these reactions (dcpf=1,1′‐bis(dicyclohexylphosphino)ferrocene). Attempted O6‐demethylation, as well as the replacement of the C‐6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd‐cleavable groups such that C? C cross‐coupling and O6‐deprotection could be accomplished in a single step. Thus, inosine 2‐chloro‐O6‐allylinosine was chosen as the substrate and, after re‐evaluation of the cross‐coupling conditions with 2‐chloro‐O6‐methylinosine as a model substrate, one‐step C? C cross‐coupling/deprotection reactions were performed with the O6‐allyl analogue. These reactions are the first such examples of a one‐pot procedure for the modification and deprotection of purine nucleosides under C? C cross‐coupling conditions.  相似文献   

17.
Radical–radical couplings are mostly nearly diffusion‐controlled processes. Therefore, the selective cross‐coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross‐coupling will become the dominant process. This high cross‐selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE‐mediated radical–radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer‐lived than the other transient radical, the PRE operates and high cross‐selectivity is achieved. This important point expands the scope of PRE‐mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer‐lived organic radicals and 2) “radical–metal crossover reactions”; here, metal‐centered radical species and more generally longer‐lived transition‐metal complexes that are able to react with radicals are discussed—a field that has flourished recently.  相似文献   

18.
Generally, there are two pathways that involve Grignard reagents and halogenated pyrimidines. The more common approach shows cross‐coupling reactions that utilize a Grignard reagent, either alkyl or aryl, with a variety of halogenated pyrimidines. Typically, these reactions are catalyzed by Fe, Co, Ni, Pd, Mn, or Zn species. Alternatively, but to a lesser degree, halogenated pyrimidines form pyrimidyl Grignard reagents, which then further react either in a cross‐coupling manner or via a standard addition process. Finally, there are a few examples in which Grignard reagents react with pyrimidines via an addition process that does not involve a halogen.  相似文献   

19.
A rhodium(III)‐catalyzed cross‐coupling of benzyl thioethers and aryl carboxylic acids through the two directing groups is reported. Useful structures with diverse substituents were efficiently synthesized in one step with the cleavage of four bonds (C? H, C? S, O? H) and the formation of two bonds (C? C, C? O). The formed structure is the privileged core in natural products and bioactive molecules. This work highlights the power of using two different directing groups to enhance the selectivity of a double C? H activation, the first of such examples in cross‐oxidative coupling.  相似文献   

20.
A combination of nickel and photoredox catalysts promoted novel cross‐coupling reactions of aryl halides with 4‐alkyl‐1,4‐dihydropyridines. 4‐Alkyl‐1,4‐dihydropyridines act as formal nucleophilic alkylation reagents through a photoredox‐catalyzed carbon–carbon (C?C) bond‐cleavage process. The present strategy provides an alternative to classical carbon‐centered nucleophiles, such as organometallic reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号