首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for the synthesis of highly substituted naphthyridine‐based polyheteroaromatic compounds in high yields proceeds through rhodium(III)‐catalyzed multiple C? H bond cleavage and C? C and C? N bond formation in a one‐pot process. Such highly substituted polyheteroaromatic compounds have attracted much attention because of their unique π‐conjugation, which make them suitable materials for organic semiconductors and luminescent materials. Furthermore, a possible mechanism, which involves multiple chelation‐assisted ortho C? H activation, alkyne insertion, and reductive elimination, is proposed for this transformation.  相似文献   

2.
3.
The aniline carbamate is introduced as a new removable directing group for C?H activation. Its versatility and ability as a directing group are demonstrated by its use in the ortho‐arylation of a wide variety of aniline derivatives under palladium(II) catalysis, with symmetric diaryliodonium salts as aryl donors. The reaction differs from previously reported arylations in its selectivity and its mechanism, as elucidated by kinetic and isotopic experiments. The directing group can also be easily removed under a variety of conditions.  相似文献   

4.
Palladium‐catalyzed dual C?H functionalization of diaryl sulfides to form dibenzothiophenes (DBTs) by oxidative dehydrogenative cyclization is reported. This protocol afforded various DBTs in moderate to good yields with tolerance of a wide variety of substrates. Benzo[1,2‐b:4,5‐b′]bis[b]benzothiophene was successfully synthesized by this method, which was used as an organic semiconductor for field‐effect transistors.  相似文献   

5.
[Cp*RhIII]‐catalyzed C? H activation of arenes assisted by an oxidizing N? O or N? N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N? O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N? O bonds in both C? H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N? O bond acts as both a directing group for C? H activation and as an O‐atom donor.  相似文献   

6.
A mechanistic study was performed on the Rh‐catalyzed stereoselective C?C/C?H activation of tert‐cyclobutanols. The present study corroborated the previous proposal that the reaction occurs by metalation, β‐C elimination, 1,4‐Rh transfer, C?O insertion, and a final catalyst‐regeneration step. The rate‐determining step was found to be the 1,4‐Rh transfer step, whereas the stereoselectivity‐determining step did not correspond to any of the aforementioned steps. It was found that both the thermodynamic stability of the product of the β‐C elimination and the kinetic feasibility of the 1,4‐Rh transfer and C?O insertion steps made important contributions. In other words, three steps (i.e., β‐C elimination, 1,4‐Rh transfer, and C?O insertion) were found to be important in determining the configurations of the two quaternary stereocenters.  相似文献   

7.
The first rhodium(I)‐catalyzed enantioselective intermolecular C –H activation of various saturated aza‐heterocycles including tetrahydroquinolines, piperidines, piperazines, azetidines, pyrrolidines, and azepanes is presented. The combination of a rhodium(I) precatalyst and a chiral monodentate phosphonite ligand is shown to be a powerful catalytic system to access a variety of important enantio‐enriched heterocycles from simple starting materials. Notably, the C –H activation of tetrahydroquinolines is especially challenging due to the adjacent C −H bond. This redox‐neutral methodology provides a new synthetic route to α‐N‐arylated heterocycles with high chemoselectivity and enantioselectivity up to 97 % ee.  相似文献   

8.
A sequential triple C? H activation reaction directed by a pyrazole and an amide group leads to the well‐controlled construction of sterically congested dihydrobenzo[e]indazole derivatives. This cascade reaction demonstrates that the often problematic competing C? H activation pathways in the presence of multiple directing groups can be harvested by design to improve step economy in synthesis. Pyrazole as a relatively weak coordinating group is shown to direct C? H activation for the first time.  相似文献   

9.
The reactivity and selectivity of 1,3‐diynes in transition‐metal‐catalyzed C? H activation is exploited to quickly assemble diverse polysubstituted bisheterocycles, which are highly important but difficult to access. By using the C? H activation/1,3‐diyne strategy, we overcame the challenges of selectivity (chemo‐, regio‐, and mono‐/diannulation) and constructed seven kinds of adjacent bisheterocycles through the formation of four strategic bonds with high efficiency and high selectivity.  相似文献   

10.
A C? H silylation of pyridines that seemingly proceeds through electrophilic aromatic substitution (SEAr) is reported. Reactions of 2‐ and 3‐substituted pyridines with hydrosilanes in the presence of a catalyst that splits the Si? H bond into a hydride and a silicon electrophile yield the corresponding 5‐silylated pyridines. This formal silylation of an aromatic C? H bond is the result of a three‐step sequence, consisting of a pyridine hydrosilylation, a dehydrogenative C? H silylation of the intermediate enamine, and a 1,4‐dihydropyridine retro‐hydrosilylation. The key intermediates were detected by 1H NMR spectroscopy and prepared through the individual steps. This complex interplay of electrophilic silylation, hydride transfer, and proton abstraction is promoted by a single catalyst.  相似文献   

11.
2,4,6‐Trimethoxypyridine is identified as an efficient ligand for promoting a Pd‐catalyzed ortho‐C? H amination of both benzamides and triflyl‐protected benzylamines. This finding provides guidance for the development of ligands that can improve or enable PdII‐catalyzed C? H activation reactions directed by weakly coordinating functional groups.  相似文献   

12.
The synthesis of all eight rare, but biologically important L ‐hexoses as the according thioglycosyl donors was achieved through a procedure involving the C? H activation of their corresponding 6‐deoxy‐L ‐hexoses. The key steps of the procedure were the silylation of the OH group at C4 followed by an intramolecular C? H activation of the methyl group in γ‐position; both steps were catalyzed by iridium. The following Fleming–Tamao oxidation and acetylation gave the suitably protected L ‐hexoses. This is the first general method for the preparation of all eight L ‐hexoses as their thioglycosyl donors ready for glycosylation and the first example of an iridium‐catalyzed C(sp3)? H activation on sulfide‐containing compounds.  相似文献   

13.
A palladium‐catalyzed C? H arylation of aliphatic amines with arylboronic esters is described, proceeding through a four‐membered‐ring cyclopalladation pathway. Crucial to the successful outcome of this reaction is the action of an amino‐acid‐derived ligand. A range of hindered secondary amines and arylboronic esters are compatible with this process and the products of the arylation can be advanced to complex polycyclic molecules by sequential C? H activation reactions.  相似文献   

14.
The synthesis of 3,3‐difluoro‐2‐oxindoles through a robust and efficient palladium‐catalyzed C? H difluoroalkylation is described. This process generates a broad range of difluorooxindoles from readily prepared starting materials. The use of BrettPhos as the ligand was crucial for high efficiency. Preliminary mechanistic studies suggest that oxidative addition is the rate‐determining step for this process.  相似文献   

15.
Rhodium‐catalyzed sulfonylation, thioetherification, thiocyanation, and other heterofunctionalizations of arenes bearing a heterocyclic directing group have been realized. The reaction proceeds by initial RhIII‐catalyzed C?H hyperiodination of arene at room temperature followed by uncatalyzed nucleophilic functionalization. A diaryliodonium salt is isolated as an intermediate, which represents umpolung of the arene substrate, in contrast to previous studies that suggested umpolung of the coupling partner.  相似文献   

16.
17.
A palladium‐catalyzed arylation of unactivated γmethylene C(sp3)?H and remote δ‐C?H bonds by using an oxazoline‐carboxylate directing group has been developed. Arylation occurs with a broad substrate scope and high tolerance of functional groups (i.e., halogen, nitro, cyano, ether, trifluoromethyl, amine, and ester). The oxazoline‐type auxiliary can be removed under acidic conditions.  相似文献   

18.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N? H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C? H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C? H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

19.
The formation of C?C bonds embodies the core of organic chemistry because of its fundamental application in generation of molecular diversity and complexity. C?C bond‐forming reactions are well‐known challenges. To achieve this goal through direct functionalization of C?H bonds in both of the coupling partners represents the state‐of‐the‐art in organic synthesis. Oxidative C?C bond formation obviates the need for prefunctionalization of both substrates. This Minireview is dedicated to the field of C?C bond‐forming reactions through direct C?H bond functionalization under completely metal‐free oxidative conditions. Selected important developments in this area have been summarized with representative examples and discussions on their reaction mechanisms.  相似文献   

20.
A total number of 15 different 3,4‐diarylthiophenes were synthesized, which bear a chlorine atom in ortho‐position of one of the aryl substituents. One aryl group was introduced by an oxidative cross‐coupling reaction, involving a C?H activation at C4(3) of the thiophene core. The other aryl group was in most cases introduced by a Suzuki cross‐coupling reaction, which succeeded the oxidative cross‐coupling step. Photocyclization reactions of the 3,4‐diarylthiophenes were performed in a solvent mixture of benzene and acetonitrile (50:50 v/v) at λ=254 nm and proceeded to the title compounds in yields of 60–82 %. The selectivity of the photocyclization was determined at the ortho‐chloro‐substituted aryl ring by the position of the chlorine substituent. At the other ring, a single regioisomer was observed for phenyl and para‐substituted phenyl groups. For 2‐naphthyl and ortho‐substituted phenyl rings a clear preference was observed in favor of a major regioisomer, while meta‐substitution in the phenyl ring led to a about 1:1 mixture of 5‐ and 7‐substituted phenanthro[9,10‐c]thiophenes. Mechanistically, the photocyclization is likely to occur as a photochemically allowed, conrotatory [(4n+2)π] process accompanied by elimination of HCl. It was shown for two phenanthro[9,10‐c]thiophene products that they can be readily brominated in positions C1 and C3 (74–77 %), which in turn allows for further functionalization at these positions, for example, in the course of halogen–metal exchange and polymerization reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号