首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

2.
The role of intramolecular metal???π‐arene interactions has been investigated in the solid‐state structures of a series of main group compounds supported by the bulky amide ligands, [N(tBuAr)(SiR3)]? (tBuAr=2,6‐(CHPh2)2‐4‐tBuC6H2, R=Me, Ph). The lithium and potassium amide salts showed different patterns of solvation and demonstrated that the SiPh3 substituent is able to be involved in stabilizing the electrophilic metal. These group 1 metal compounds served as ligand transfer reagents to access a series of bismuth(III) halides. Chloride extraction from Bi(N{tBuAr}{SiPh3})Cl2 using AlCl3 afforded the 1:1 salt [Bi(N{tBuAr}{SiPh3})Cl][AlCl4]. This was accompanied by a significant rearrangement of the stabilizing π‐arene contacts in the solid‐state. Attempted preparation of the corresponding tetraphenylborate salt resulted in phenyl‐transfer and generation of the neutral Bi(N{tBuAr}{SiPh3})(Ph)Cl.  相似文献   

3.
The pairing of ions of opposite charge is a fundamental principle in chemistry, and is widely applied in synthesis and catalysis. In contrast, cation–cation association remains an elusive concept, lacking in supporting experimental evidence. While studying the structure and properties of 4‐oxopiperidinium salts [OC5H8NH2]X for a series of anions X? of decreasing basicity, we observed a gradual self‐association of the cations, concluding in the formation of an isolated dicationic pair. In 4‐oxopiperidinium bis(trifluoromethylsulfonyl)amide, the cations are linked by N? H???O?C hydrogen bonds to form chains, flanked by hydrogen bonds to the anions. In the tetra(perfluoro‐tert‐butoxy)aluminate salt, the anions are fully separated from the cations, and the cations associate pairwise by N? C? H???O?C hydrogen bonds. The compounds represent the first genuine examples of self‐association of simple organic cations based merely on hydrogen bonding as evidenced by X‐ray structure analysis, and provide a paradigm for an extension of this class of compounds.  相似文献   

4.
5.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

6.
The C?H???Y (Y=hydrogen‐bond acceptor) interactions are somewhat unconventional in the context of hydrogen‐bonding interactions. Typical C?H stretching frequency shifts in the hydrogen‐bond donor C?H group are not only small, that is, of the order of a few tens of cm?1, but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen‐bond acceptor. In this work we examine the C?H???N interaction in complexes of 7‐azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra‐red (FDIR) method. Although the hydrogen‐bond acceptor, 7‐azaindole, has multiple sites of interaction, it is found that the C?H???N hydrogen‐bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C?H stretching frequency is found to be red shifted by 82 cm?1 in the CHCl3 complex, which is the largest redshift reported so far in gas‐phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C?H frequency is blue shifted by 4 cm?1. This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm?1. This discrepancy is analogous to that reported for the pyridine‐CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A­ 2005 , 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C?H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug‐cc‐pVDZ level) as 6.46 and 5.06 kcal mol?1, respectively.  相似文献   

7.
The partial fluorination of polycyclic aromatic hydrocarbons often produces a layered crystal packing, where fluorinated aromatic surfaces are stacked over nonfluorinated aromatic surfaces. Herein, we report the synthesis and crystal packing of partially fluorinated [4]helicenes with steric congestion resulting from H and F atoms in the fjord region. F6‐[4]Helicene forms head‐to‐tail columnar stacks consisting of an alternate arrangement of perfluorinated and nonfluorinated naphthalene moieties. With decreasing fluorine content, aromatic stacking switched from arene?fluoroarene (ArH?ArF) hetero‐stacking to ArH?ArH/ArF?ArF homo‐stacking with the help of intermolecular C?H???F contacts in the fjord region. As a result, head‐to‐head columnar stacks appear. Therefore, the conventional ArH?ArF stacking motif is not always applicable to Fn‐[4]helicenes with twisted π‐surfaces.  相似文献   

8.
The effect of monohydration in equatorial/axial isomerism of the common motif of tropane alkaloids is investigated in a supersonic expansion by using Fourier‐transform microwave spectroscopy. The rotational spectrum reveals the equatorial isomer as the dominant species in the tropinone???H2O complex. The monohydrated complex is stabilized primarily by a moderate O?H???N hydrogen bond. In addition, two C?H???O weak hydrogen bonds also support this structure, blocking the water molecule and avoiding any molecular dynamics in the complex. The water molecule acts as proton donor and chooses the ternary amine group over the carbonyl group as a proton acceptor. The experimental work is supported by theoretical calculations; the accuracy of the B3LYP, M06‐2X, and MP2 methods is also discussed.  相似文献   

9.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

10.
Several bis‐triazolium‐based receptors have been synthesized and their anion‐recognition capabilities have been studied. The central chiral 1,1′‐bi‐2‐naphthol (BINOL) core features either two aryl or ferrocenyl end‐capped side arms with central halogen‐ or hydrogen‐bonding triazolium receptors. NMR spectroscopic data indicate the simultaneous occurrence of several charge‐assisted aliphatic and heteroaromatic C?H noncovalent interactions and combinations of C?H hydrogen and halogen bonding. The receptors are able to selectively interact with HP2O73?, H2PO4?, and SO42? anions, and the value of the association constant follows the sequence: HP2O73?>SO42?>H2PO4?. The ferrocenyl end‐capped 72+?2 BF4 ? receptor allows recognition and differentiation of H2PO4? and HP2O73? anions by using different channels: H2PO4? is selectively detected through absorption and emission methods and HP2O73? by using electrochemical techniques. Significant structural results are the observation of an anion???anion interaction in the solid state (2:2 complex, 62+? [ H2P2O7 ] 2? ), and a short C?I???O contact is observed in the structure of the complex [ 8 2+][SO4]0.5[BF4].  相似文献   

11.
Inspired by the active‐site structure of the [NiFe] hydrogenase, we have computationally designed the iron complex [PtBu2NtBu2)Fe(CN)2CO] by using an experimentally ready‐made diphosphine ligand with pendant amines for the hydrogenation of CO2 to methanol. Density functional theory calculations indicate that the rate‐determining step in the whole catalytic reaction is the direct hydride transfer from the Fe center to the carbon atom in the formic acid with a total free energy barrier of 28.4 kcal mol?1 in aqueous solution. Such a barrier indicates that the designed iron complex is a promising low‐cost catalyst for the formation of methanol from CO2 and H2 under mild conditions. The key role of the diphosphine ligand with pendent amine groups in the reaction is the assistance of the cleavage of H2 by forming a Fe?Hδ????Hδ+?N dihydrogen bond in a fashion of frustrated Lewis pairs.  相似文献   

12.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

13.
Four novel organotin complexes of two types—[R2Sn(o‐SC6H4CO2)]6 (R=Me, 1 ?H2O; nBu, 2 ) and {[R2Sn(m‐CO2C6H4S)R2Sn(m‐SC6H4CO2)SnR2]O}2 (R=Me, 3 ; nBu, 4 )—have been prepared by treatment of o‐ or m‐mercaptobenzoic acid and the corresponding R2SnCl2 (R=Me, nBu) with sodium ethoxide in ethanol (95 %). All the complexes were characterized by elemental analysis, FT‐IR and NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X‐ray crystallography diffraction analysis. The molecular structure analyses reveal that both 1 and 2 are hexanuclear macrocycles with hydrophobic “pseudo‐cage” structures, while 3 and 4 are hexanuclear macrocycles with double‐cavity structures. Furthermore, the supramolecular structure analyses show that looser and more intriguing supramolecular infrastructures were also found in complexes 1 – 4 , which exist either as one‐dimensional chains of rings or as two‐dimensional networks assembled from the organometallic subunits through intermolecular C? H???S weak hydrogen bonds (WHBs) and π–π interactions.  相似文献   

14.
The resonance character of Cu/Ag/Au bonding is investigated in B???M?X (M=Cu, Ag, Au; X=F, Cl, Br, CH3, CF3; B=CO, H2O, H2S, C2H2, C2H4) complexes. The natural bond orbital/natural resonance theory results strongly support the general resonance‐type three‐center/four‐electron (3c/4e) picture of Cu/Ag/Au bonding, B:M?X?B+?M:X?, which mainly arises from hyperconjugation interactions. On the basis of such resonance‐type bonding mechanisms, the ligand effects in the more strongly bound OC???M?X series are analyzed, and distinct competition between CO and the axial ligand X is observed. This competitive bonding picture directly explains why CO in OC???Au?CF3 can be readily replaced by a number of other ligands. Additionally, conservation of the bond order indicates that the idealized relationship bB???M+bMX=1 should be suitably generalized for intermolecular bonding, especially if there is additional partial multiple bonding at one end of the 3c/4e hyperbonded triad.  相似文献   

15.
Low‐temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe3)2] ( 1 ) by Et2O ? HBF4 gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(η2‐H2)(PMe3)2]+ ( 2 ) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)2(PMe3)2]+ ( 3 ) is the only observable product in dichloromethane. Both products were fully characterised (νCO IR; 1H, 31P, 13C NMR spectroscopies) at low temperature; they lose H2 upon warming to 230 K at approximately the same rate (ca. 10?3 s?1), with no detection of the non‐classical form in CD2Cl2, to generate [Mo(CO)(Cp*)(FBF3)(PMe3)2] ( 4 ). The latter also slowly decomposes at ambient temperature. One of the decomposition products was crystallised and identified by X‐ray crystallography as [Mo(CO)(Cp*)(FH???FBF3)(PMe3)2] ( 5 ), which features a neutral HF ligand coordinated to the transition metal through the F atom and to the BF4? anion through a hydrogen bond. The reason for the switch in relative stability between 2 and 3 was probed by DFT calculations based on the B3LYP and M05‐2X functionals, with inclusion of anion and solvent effects by the conductor‐like polarisable continuum model and by explicit consideration of the solvent molecules. Calculations at the MP4(SDQ) and CCSD(T) levels were also carried out for calibration. The calculations reveal the key role of non‐covalent anion–solvent interactions, which modulate the anion–cation interaction ultimately altering the energetic balance between the two isomeric forms.  相似文献   

16.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

17.
18.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

19.
Reaction of the tin cluster Sn8(Ar)4 (Ar=C6H2‐2,6‐(C6H3‐2,4,6‐Me3)2) with excess ethylene or dihydrogen at 25 °C/1 atmosphere yielded two new clusters that incorporated ethylene or hydrogen. The reaction with ethylene yielded Sn4(Ar)4(C2H2)5 that contained five ethylene moieties bridging four aryl substituted tin atoms and one tin–tin bond. Reaction with H2 produced a cyclic tin species of formula (Sn(H)Ar)4, which could also be synthesized by the reaction of {(Ar)Sn(μ‐Cl)}2 with DIBAL‐H. These reactions represent the first instances of direct reactions of isolable main‐group clusters with ethylene or hydrogen under mild conditions. The products were characterized in the solid state by X‐ray diffraction and IR spectroscopy and in solution by multinuclear NMR and UV/Vis spectroscopies. Density functional theory calculations were performed to explain the reactivity of the cluster.  相似文献   

20.
By using paramagnetic [Fe(CN)6]3? anions in place of diamagnetic [Co(CN)6]3? anions, two field‐induced mononuclear single‐molecular magnets, [Nd(18‐crown‐6)(H2O)4][Co(CN)6] ? 2 H2O ( 1 ) and [Nd(18‐crown‐6)(H2O)4][Fe(CN)6] ? 2 H2O ( 2 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction analysis revealed that compounds 1 and 2 were ionic complexes. The NdIII ions were located inside the cavities of the 18‐crown‐6 ligands and were each bound by four water molecules on either side of the crown ether. Magnetic investigations showed that these compounds were both field‐induced single‐molecular magnets. By comparing the slow relaxation behaviors of compounds 1 and 2 , we found significant differences between the direct and Raman processes for these two complexes, with a stronger direct process in compound 2 at low temperatures. Complete active space self‐consistent field (CASSCF) calculations were also performed on two [Nd(18‐crown‐6)(H2O)4]3+ fragments of compounds 1 and 2 . Ab initio calculations showed that the magnetic anisotropies of the NdIII centers in complexes 1 and 2 were similar to each other, which indicated that the difference in relaxation behavior was not owing to the magnetic anisotropy of NdIII. Our analysis showed that the magnetic interaction between the NdIII ion and the low‐spin FeIII ion in complex 2 played an important role in enhancing the direct process and suppressing the Raman process of the single‐molecular magnet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号