首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variable‐temperature NMR and ESR spectroscopic studies reveal that bis(dibenzo[a,i]fluorenylidene) 1 possesses a singlet ground state, 1 (S0), while the 90° twisted triplet 1 (T1) is populated to a small extent already at room temperature. Analysis of the increasing amount of paramagnetic 1 (T1) at temperatures between 300 and 500 K yields the exchange interaction Jex/h c=3351 cm?1 and a singlet–triplet energy splitting of 9.6 kcal mol?1, which is in excellent agreement with calculations (9.3 kcal mol?1 at the UKS BP86/B3LYP/revPBE level of theory). In contrast, the zero‐field splitting parameter D is very small (calculated value ?0.018 cm?1) and unmeasurable.  相似文献   

2.
Carbenes are among the few metal‐free molecules that are able to activate molecular hydrogen. Whereas triplet carbenes have been shown to insert into H2 through a two‐step mechanism that at low temperature is assisted by quantum mechanical tunneling (QMT), singlet carbenes insert in concerted reactions with considerable activation barriers, and are thus unreactive towards H2 at cryogenic temperatures. Here we show that 1‐azulenylcarbene with a singlet ground state readily inserts into H2, and that QMT governs the insertion into both H2 and D2. This is the first example that shows that QMT can also be important for singlet carbenes inserting into dihydrogen.  相似文献   

3.
4‐Oxocyclohexa‐2,5‐dienylidene is a highly reactive triplet ground state carbene that is hydrogenated in solid H2, HD, and D2 at temperatures as low as 3 K. The mechanism of the insertion of the carbene into dihydrogen was investigated by IR and EPR spectroscopy and by kinetic studies. H or D atoms were observed as products of the reaction with H2 and D2, respectively, whereas HD produces exclusively D atoms. The hydrogenation shows a very large kinetic isotope effect and remarkable isotope selectivity, as was expected for a tunneling reaction. The experiments, therefore, provide clear evidence for both hydrogen tunneling and the rare deuterium tunneling in an intermolecular reaction.  相似文献   

4.
A near‐IR spectral study on pure water and aqueous salt solutions is used to investigate stoichiometric concentrations of different types of hydrogen‐bonded water species in liquid water and in water comprising the hydration shell of salts. Analysis of the thermodynamics of hydrogen‐bond formation signifies that hydrogen‐bond making and breaking processes are dominated by enthalpy with non‐negligible heat capacity effects, as revealed by the temperature dependence of standard molar enthalpies of hydrogen‐bond formation and from analysis of the linear enthalpy–entropy compensation effects. A generalized method is proposed for the simultaneous calculation of the spectrum of water in the hydration shell and hydration number of solutes. Resolved spectra of water in the hydration shell of different salts clearly differentiate hydrogen bonding of water in the hydration shell around cations and anions. A comparison of resolved liquid water spectra and resolved hydration‐shell spectra of ions highlights that the ordering of absorption frequencies of different kinds of hydrogen‐bonded water species is also preserved in the bound state with significant changes in band position, band width, and band intensity because of the polarization of water molecules in the vicinity of ions.  相似文献   

5.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

6.
The tetrapyridyl ligand bbpya (bbpya=N,N‐bis(2,2′‐bipyrid‐6‐yl)amine) and its mononuclear coordination compound [Fe(bbpya)(NCS)2] ( 1 ) were prepared. According to magnetic susceptibility, differential scanning calorimetry fitted to Sorai’s domain model, and powder X‐ray diffraction measurements, 1 is low‐spin at room temperature, and it exhibits spin crossover (SCO) at an exceptionally high transition temperature of T1/2=418 K. Although the SCO of compound 1 spans a temperature range of more than 150 K, it is characterized by a wide (21 K) and dissymmetric hysteresis cycle, which suggests cooperativity. The crystal structure of the LS phase of compound 1 shows strong N?H???S intermolecular H‐bonding interactions that explain, at least in part, the cooperative SCO behavior observed for complex 1 . DFT and CASPT2 calculations under vacuum demonstrate that the bbpya ligand generates a stronger ligand field around the iron(II) core than its analogue bapbpy (N,N′‐di(pyrid‐2‐yl)‐2,2′‐bipyridine‐6,6′‐diamine); this stabilizes the LS state and destabilizes the HS state in 1 compared with [Fe(bapbpy)(NCS)2] ( 2 ). Periodic DFT calculations suggest that crystal‐packing effects are significant for compound 2 , in which they destabilize the HS state by about 1500 cm?1. The much lower transition temperature found for the SCO of 2 compared to 1 appears to be due to the combined effects of the different ligand field strengths and crystal packing.  相似文献   

7.
Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy-atom QMT reaction. Triplet syn-2-formyl-3-fluorophenylnitrene, generated in argon matrices by UV-irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4-fluoro-2,1-benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature-independent rate constants (k≈1.4×10−3 s−1; half-life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy-atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy-atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices.  相似文献   

8.
The future evolution of benzoxazines and polybenzoxazines as advanced molecular, structural, functional, engineering, and newly commercial materials depends to a great extent on a deeper and more fundamental understanding at the molecular level. In this contribution, the field of benzoxazines is briefly introduced along with a more detailed review of ortho‐amide‐functional benzoxazines, which are the main subjects of this article. Provided in this article are the detailed and solid scientific evidences of intramolecular five‐membered‐ring hydrogen bonding, which is supposed to be responsible for the unique and characteristic features exhibited by this ever‐growing family of ortho‐functionalized benzoxazines. One‐dimensional (1D) 1H NMR spectroscopy was used to study various concentrations of benzoxazines in various solvents with different hydrogen‐bonding capability and at various temperatures to investigate in detail the nature of hydrogen bonding in both ortho‐amide‐functionalized benzoxazine and its para counterpart. These materials were further investigated by two‐dimensional (2D) 1H–1H nuclear Overhauser effect spectroscopy (NOESY) to verify and support the conclusions derived during the 1D 1H NMR experiments. Only highly purified single‐crystal benzoxazine samples have been used for this study to avoid additional interactions caused by any impurities.  相似文献   

9.
A noteworthy example of a molecule with coupled large-amplitude motions is provided by acetylacetone (methyl group torsions and intramolecular hydrogen bonds). The molecule was trapped in solid parahydrogen to investigate the complex proton tunneling processes. Nuclear spin conversion in methyl groups is observed and, combined with IR spectra, documents the coupling between high frequency modes and large amplitude motions.  相似文献   

10.
11.
12.
Ab initio molecular orbital calculations at the G2(MP2) level have been carried out on cyclopropylsilylene C3H5SiH. Four equilibrium structures were located. Like H2Si, the ground state of C3H5SiH is singlet and the triplet is the low‐lying excited state. The singlet–triplet separation energy is 127.9 kJ/mol. The cis‐trans isomerization path of singlet cyclopropylsilylene was investigated by intrinsic reaction coordinate (IRC) calculations. The calculations show that no gauche conformers exist along the potential energy curve of the cis‐trans isomerization and the isomerization happens with a barrier of 30.1 kJ/mol. Changes (ΔH and ΔG) in thermodynamic functions, equilibrium constant K(T), and A factor and reaction rate constant k(T) in Eyring transition state theory of the cis‐trans isomerization were also calculated. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

13.
That's radical! A photochemical reaction between the phenyl radical and water results in the abstraction of a hydrogen atom from water and the formation of a hydroxyl radical. The hydroxyl radical forms an OH???π hydrogen bond with benzene (see picture) and does not react with benzene thermally under the conditions of matrix isolation.

  相似文献   


14.
15.
对近期有机分子三重激发态调控的研究进展进行了总结评述。控制分子的三重激发态性质,可以制备多种具有新颖性质的分子,如用于可激活光动力治疗(PDT)的光敏剂、磷光分子探针与生物标识试剂,以及可控的三重态湮灭上转换等。但目前对三重态控制方面的研究相对较少,其中的规律也很不明确。近期有文献陆续报道了使用超分子方法和共价修饰法进行的三重态调控,利用的光物理过程有单重态能量转移、三重态能量转移、电子转移等等。现有研究结果表明,三重态的调控规律与单重态的调控规律有所不同,例如:发色团的单重激发态(荧光)往往可以被光诱导电子转移(PET)所猝灭,但是在多个例子中已发现,相同发色团的三重态并不能被PET所猝灭。本文总结的研究结果及所作的分析,将对该领域的分子结构设计及后续研究起到一定的促进作用。  相似文献   

16.
Using ultrafast fluorescence upconversion and mid‐infrared spectroscopy, we explore the role of hydrogen bonds in the photoinduced electron transfer (ET) between 9‐fluorenone (FLU) and the solvents trimethylamine (TEA) and dimethylamine (DEA). FLU shows hydrogen‐bond dynamics in the methanol solvent upon photoexcitation, and similar effects may be anticipated when using DEA, whereas no hydrogen bonds can occur in TEA. Photoexcitation of the electron‐acceptor dye molecule FLU with a 400 nm pump pulse induces ultrafast ET from the amine solvents, which is followed by 100 fs IR probe pulses as well as fluorescence upconversion, monitoring the time evolution of marker bands of the FLU S1 state and the FLU radical anion, and an overtone band of the amine solvent, marking the transient generation of the amine radical cation. A comparison of the experimentally determined forward charge‐separation and backward charge‐recombination rates for the FLU‐TEA and FLU‐DEA reaction systems with the driving‐force dependencies calculated for the forward and backward ET rates reveals that additional degrees of freedom determine the ET reaction dynamics for the FLU‐DEA system. We suggest that hydrogen bonding between the DEA molecules plays a key role in this behaviour.  相似文献   

17.
晶体中邻甲氧基苯甲酸以分子间氢键形成的二聚体形式存在,但邻乙氧基苯甲酸却以分子内氢键形成的单体存在.本文用低温红外光谱,结合氘代和酰氯化实验揭示了邻乙氧基苯甲酸晶体中也存在二聚体,但室温时含量很少,随着温度降低,含量逐渐增加.  相似文献   

18.
Not long ago, the occurrence of quantum mechanical tunneling (QMT) chemistry involving atoms heavier than hydrogen was considered unreasonable. Contributing to the shift of this paradigm, we present here the discovery of a new and distinct heavy‐atom QMT reaction. Triplet syn‐2‐formyl‐3‐fluorophenylnitrene, generated in argon matrices by UV‐irradiation of an azide precursor, was found to spontaneously cyclize to singlet 4‐fluoro‐2,1‐benzisoxazole. Monitoring the transformation by IR spectroscopy, temperature‐independent rate constants (k≈1.4×10?3 s?1; half‐life of ≈8 min) were measured from 10 to 20 K. Computational estimated rate constants are in fair agreement with experimental values, providing evidence for a mechanism involving heavy‐atom QMT through crossing triplet to singlet potential energy surfaces. Moreover, the heavy‐atom QMT takes place with considerable displacement of the oxygen atom, which establishes a new limit for the heavier atom involved in a QMT reaction in cryogenic matrices.  相似文献   

19.
The significant progress recently achieved in designing smart acid‐responsive materials based on intramolecular charge transfer inspired us to utilize excited‐state intramolecular proton transfer (ESIPT) for developing a turn‐on acid‐responsive fluorescent system with an exceedingly large Stokes shift. Two ESIPT‐active fluorophores, 2‐(2‐hydroxyphenyl)pyridine (HPP) and 2‐(2‐hydroxyphenyl)benzothiazole (HBT), were fused into a novel dye (HBT‐HPP) fluorescent only in the protonated state. Moreover, we also synthesized three structurally relevant control compounds to compare their steady‐state fluorescence spectra and optimized geometric structures in neutral and acidic media. The results suggest that the fluorescence turn‐on was caused by the acid‐induced shift of the ESIPT‐responsible intramolecular hydrogen bond from the HPP to HBT moiety. This work presents a systematic comparison of the emission efficiencies and basicity of HBT and HPP for the first time, thereby utilizing their differences to construct an acid‐responsive smart organic fluorescent material. As a practical application, red fluorescent letters can be written using the acid as an ink on polymer film.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号