首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis of dimethoxymethane (DMM) by a multistep reaction of methanol with carbon dioxide and molecular hydrogen is reported. Using the molecular catalyst [Ru(triphos)(tmm)] in combination with the Lewis acid Al(OTf)3 resulted in a versatile catalytic system for the synthesis of various dialkoxymethane ethers. This new catalytic reaction provides the first synthetic example for the selective conversion of carbon dioxide and hydrogen into a formaldehyde oxidation level, thus opening access to new molecular structures using this important C1 source.  相似文献   

3.
Pt and MoOx co‐loaded TiO2 is found to be highly effective for direct methylation of aliphatic and aromatic secondary amines by CO2 and H2 under solvent‐free conditions. This is the first additive‐free and reusable heterogeneous catalytic system with acceptable turnover number.  相似文献   

4.
5.
6.
7.
The borrowing hydrogen strategy has been applied to the ethylation of imines with an air‐stable iron complex as precatalyst. This approach opens new perspectives in this area as it enables the synthesis of unsymmetric tertiary amines from readily available substrates and ethanol as a C2 building block. A variety of imines bearing electron‐rich aryl or alkyl groups at the nitrogen atom could be efficiently reductively alkylated without the need for molecular hydrogen. The mechanism of this reaction, which shows complete selectivity for ethanol over other alcohols, has been studied experimentally and by means of DFT computations.  相似文献   

8.
Reversible transformation of diethylamine ( 1 ) and supercritical carbon dioxide (scCO2) into N,N‐diethylcarbamic acid ( 2 ) was confirmed by direct acquisition of 1H and 13C{1H} NMR spectra. The equilibrium between 1 +CO2 and 2 is strongly influenced by conditions of the supercritical state. Low temperature favors formation of carbamic acid, whereas high temperature causes decarboxylation. On the basis of the spectroscopic results of carbamic acid formation under scCO2 conditions, the ruthenium‐catalyzed formation of alkenyl carbamates from terminal alkynes, 1 , and carbon dioxide was investigated to demonstrate the useful transformation of elusive carbamic acids. Selectivity toward the CO2‐fixation products over enynes obtained by dimerization of the alkyne substrates was improved by the use of scCO2 as a reaction medium. In particular, a CO2‐soluble ruthenium complex, trans‐[RuCl2{P(OC2H5)3}4], was found to be effective in affording Z alkenyl carbamates with high stereoselectivity.  相似文献   

9.
Under the conditions of ruthenium‐catalyzed transfer hydrogenation employing isopropanol as a source of hydrogen, isopropoxy‐substituted enyne 1 b and aldehydes 3 a – 3 l engage in reductive coupling to provide products of propargylation 4 a – 4 l with good to complete levels of anti‐diastereoselectivity. The unprotected tertiary hydroxy moiety of isopropoxy enyne 1 b is required to enforce diastereoselectivity. Deuterium‐labeling studies corroborate reversible enyne hydrometalation in advance of carbonyl addition. As demonstrated in the conversion of 4 f – h and 4 k to 5 f – h and 5 k , the isopropoxy group of the product is readily cleaved upon exposure to aqueous sodium hydroxide to reveal the terminal alkyne.  相似文献   

10.
A Ru‐catalyzed direct asymmetric reductive amination of ortho‐OH‐substituted diaryl and sterically hindered ketones with ammonium salts is reported. This method represents a straightforward route toward the synthesis of synthetically useful chiral primary diarylmethylamines and sterically hindered benzylamines (up to 97 % yield, 93–>99 % ee). Elaborations of the chiral amine products into bioactive compounds and a chiral ligand were demonstrated through manipulation of the removable and convertible ‐OH group.  相似文献   

11.
12.
Reported herein, for the first time, is the selective ruthenium‐catalyzed reductive alkoxylation and amination of phthalimides/succinimides. Notably, this novel methodology avoids hydrogenation of the aromatic ring and allows methoxylation of substituted imides with good to excellent selectivity for one of the carbonyl groups. The reported method opens the door to the development of new processes for the selective synthesis of various functionalized N‐heterocyclic compounds. As an example, intramolecular reductive couplings to afford tricyclic compounds are presented for the first time.  相似文献   

13.
A polyoxometalate of the Keggin structure substituted with RuIII, 6Q5[RuIII(H2O)SiW11O39] in which 6Q=(C6H13)4N+, catalyzed the photoreduction of CO2 to CO with tertiary amines, preferentially Et3N, as reducing agents. A study of the coordination of CO2 to 6Q5[RuIII(H2O)SiW11O39] showed that 1) upon addition of CO2 the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (gx=2.146, gy=2.100, and gz=1.935), and 3) the 13C NMR spectrum had a broadened peak of bound CO2 at 105.78 ppm (Δ1/2=122 Hz). It was concluded that CO2 coordinates to the RuIII active site in both the presence and absence of Et3N to yield 6Q5[RuIII(CO2)SiW11O39]. Electrochemical measurements showed the reduction of RuIII to RuII in 6Q5[RuIII(CO2)SiW11O39] at ?0.31 V versus SCE, but no such reduction was observed for 6Q5[RuIII(H2O)SiW11O39]. DFT‐calculated geometries optimized at the M06/PC1//PBE/AUG‐PC1//PBE/PC1‐DF level of theory showed that CO2 is preferably coordinated in a side‐on manner to RuIII in the polyoxometalate through formation of a Ru? O bond, further stabilized by the interaction of the electrophilic carbon atom of CO2 to an oxygen atom of the polyoxometalate. The end‐on CO2 bonding to RuIII is energetically less favorable but CO2 is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp2 hybridization state. Formation of a O2C–NMe3 zwitterion, in turn, causes bending of CO2 and enhances the carbon sp2 hybridization. The synergetic effect of these two interactions stabilizes both Ru–O and C–N interactions and probably determines the promotional effect of an amine on the activation of CO2 by [RuIII(H2O)SiW11O39]5?. Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO2 and Et3N. A mechanistic pathway for photoreduction of CO2 is suggested based on the experimental and computed results.  相似文献   

14.
A highly regioselective ruthenium‐catalyzed hydroaminomethylation of olefins is reported. Using easily available trirutheniumdodecacarbonyl an efficient sequence consisting of a water‐gas shift reaction, hydroformylation of olefins, with subsequent imine or enamine formation and final reduction is realized. This novel procedure is highly practical (ligand‐free, one pot) and economic (low catalyst loading and inexpensive metal). Bulk industrial as well as functionalized olefins react with various amines to give the corresponding tertiary amines generally in high yields (up to 92 %), excellent regioselectivities (n/iso>99:1), and full chemoselectivity in favor of terminal olefins.  相似文献   

15.
16.
17.
The “green” reduction of carboxylic acids to alcohols is a challenging task in organic chemistry. Herein, we describe a general protocol for generation of alcohols by catalytic hydrogenation of carboxylic acids. Key to success is the use of a combination of Ru(acac)3, triphos and Lewis acids. The novel method showed broad substrate tolerance and a variety of aliphatic carboxylic acids including biomass‐derived compounds can be smoothly reduced.  相似文献   

18.
Reported is the development of a novel catalytic cascade reaction facilitating the modular synthesis of cyclic tertiary amines from simple lactam substrates and secondary alcohols. Using a single molecular ruthenium‐triphos catalyst in the presence of molecular hydrogen enabled the versatile formation of various amines in high yield with excellent selectivity. Extending the reaction system to using an alcohol as the hydrogen transfer reagent allowed the reduction of lactams without the need for molecular hydrogen.  相似文献   

19.
20.
N‐methylation of amines is an important step in the synthesis of many pharmaceuticals and has been widely applied in the preparation of other key intermediates and chemicals. Therefore, the development of efficient methylation methods has attracted considerable attention. In this respect, carbon dioxide is an attractive C1 building block because it is an abundant, renewable, and nontoxic carbon source. Consequently, we developed a highly chemoselective, metal‐free catalytic system that operates under ambient conditions for the N‐methylation of amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号