首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proton transport via dynamic molecules is ubiquitous in chemistry and biology. However, its use as a switching mechanism for properties in functional molecular assemblies is far less common. In this study, we demonstrate how an intra‐carboxyl proton shuttle can be generated in a molecular assembly akin to a rack‐and‐pinion cascade via a thermally induced single‐crystal‐to‐single‐crystal phase transition. In a triply interpenetrated supramolecular organic framework (SOF), a 4,4′‐azopyridine (azpy) molecule connects to two biphenyl‐3,3′,5,5′‐tetracarboxylic acid (H4BPTC) molecules to form a functional molecular system with switchable mechanical properties. A temperature change reversibly triggers a molecular movement akin to a rack‐and‐pinion cascade, which mainly involves 1) an intra‐carboxyl proton shuttle coupled with tilting of the azo molecules and azo pedal motion and 2) H4BPTC translation. Moreover, both the molecular motions are collective, and being propagated across the entire framework, leading to a macroscopic crystal expansion and contraction.  相似文献   

2.
The molecular‐level motions of a coronene‐based supramolecular rotator are amplified into macroscopic changes of crystals by co‐assembly of coronene and TCNB (1,2,4,5‐tetracyanobenzene) into a charge‐transfer complex. The as‐prepared cocrystals show remarkable self‐healing behavior and thermo‐mechanical responses during thermally‐induced reversible single‐crystal‐to‐single‐crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally‐reduced‐rate‐dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self‐healing behavior of these crystals.  相似文献   

3.
Mechano‐induced single‐crystal‐to‐single‐crystal (SCSC) phase transitions in crystalline materials that change their properties have received more and more attention. However, there are still too few examples to study molecular‐level mechanisms in the mechano‐induced SCSC phase transitions, making the systematic and in‐depth understanding very difficult. We report that bis‐(8‐hydroxyquinolinato) palladium(II)‐tetracyanoquinodimethane (PdQ2‐TCNQ) and bis‐(8‐hydroxyquinolinato) copper(II)‐tetracyanoquinodimethane (CuQ2‐TCNQ) show very different mechano‐response behaviors during the SCSC phase transition. Phase transition in CuQ2‐TCNQ can be triggered by pricking on the crystal surface, while in PdQ2‐TCNQ it can only be induced by applying pressure uniformly over the whole crystal face. The crystallography data and Hirshfeld surface analysis indicate that the weak intra‐layer C?H???O, C?H???N hydrogen bonds and inter‐layer stacking interactions determine the feasibility of the SCSC phase transition by mechanical stimuli. Weaker intra‐layer interactions and looser inter‐layer stacking make the SCSC phase transition occur much more easily in the CuQ2‐TCNQ.  相似文献   

4.
To obtain solid‐state emissive materials having stimuli‐responsive luminescent chromic properties without phase transition, benzobithiophenes modified with two o‐carborane units having various substituents in the adjacent phenyl ring in o‐carborane were designed and synthesized. Their emission colors were strongly affected not only by the substituents at the para‐position of the phenyl ring but also by molecular distribution in the solid state. In particular, the emission colors were changed by heating without crystal phase transition. It was proposed that their thermochromic properties were correlated not with isomerization but with the molecular motion at the distorted benzobithiophene moiety.  相似文献   

5.
Three conformational polymorphs of N‐(4′‐methoxyphenyl)‐3‐bromothiobenzamide, yellow α, orange β, and yellow γ, have been identified by single‐crystal X‐ray diffraction. The properties and structure of the polymorphs were examined with FT Raman, FTIR (ATR), and UV/Vis spectroscopy, as well as differential scanning calorimetry. Computational data on rotational barriers in the isolated gas‐phase molecule indicate that the molecular conformation found in the α form is energetically preferred, but only by around 2 kJ mol?1 over the γ conformation. The planar molecular structure found in the β form is destabilized by 10–14 kJ mol?1, depending on the calculation method. However, experimental evidence suggests that the β polymorph is the most stable crystalline phase at room temperature. This is attributed to the relative planarity of this structure, which allows more and stronger intermolecular interactions, that is, more energetically effective packing. Calculated electronic‐absorption maxima were in agreement with experimental spectra.  相似文献   

6.
Mechano‐induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano‐responsive molecular crystals exhibit crystal‐to‐amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) ( 1 ) and phenyl(3,5‐dimethylphenylisocyanide)gold(I) ( 2 ) complexes, which exhibit a mechano‐triggered single‐crystal‐to‐single‐crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano‐induced phase transitions have indicated that they undergo non‐epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash‐photolysis time‐resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time, even with repeated trials. The present studies provide us with a variety of hitherto unknown insights into mechano‐responsive molecular crystals, which help us to understand the phase transition behaviors upon mechanical stimulation and establish rational design principles.  相似文献   

7.
《化学:亚洲杂志》2018,13(19):2916-2922
Molecular‐based ionic co‐crystals, which have the merits of low‐cost/easy fabrication processes and flexible structure and functionality, have already exhibited tremendous potential in molecular memory switches and other electric devices. However, dipole (ON/OFF switching) triggering is a huge challenge. Here, we introduce a pendulum‐like dynamic strategy to induce the order–disorder transition of a co‐crystal [C5H7N3Cl]3[Sb2Br9] (compound 1 ). Here, the anion and cation act as a stator and a pendulum‐like rotor (the source of the dielectric switch), respectively. The temperature‐dependent dielectric and differential scanning calorimetry (DSC) analyses reveal that 1 undergoes a reversible phase transition, which stems from the order–disorder transition of the cations. The thermal ON/OFF switchable motions make 1 a promising candidate to promote the development of bulk crystals as artificial intelligent dielectric materials. In addition, the pendulum‐like molecular dynamics and distinct arrangements of two coexisting ions with a notable offset effect promotes/hinders dipolar reorientation after dielectric transition and provides a rarely observed but fairly useful and feasible strategy for understanding and modulating the dipole motion in crystalline electrically polarizable materials.  相似文献   

8.
The Candida antarctica lipase B (Novozyme‐435)‐catalyzed ring‐opening polymerization of ω‐pentadecalactone in toluene was performed. Poly(ω‐pentadecalactone) [poly(PDL)] was obtained in a 93% isolated yield in 4 h with a number‐average molecular weight of 64.5 × 103 g/mol and a polydispersity index of 2.0. The solid‐state properties of poly(PDL) were investigated by thermogravimetric analysis (TGA) coupled with mass spectrometry, differential scanning calorimetry (DSC), stress–strain measurements, wide‐angle X‐ray diffraction, and dynamic mechanical and dielectric spectroscopies. Poly(PDL) is a crystalline polymer that melts around 100 °C. The polyester shows good thermal stability, with a main TGA weight loss centered at 425 °C. Because of the high degree of poly(PDL) crystallinity, the glass transition (?27 °C) is revealed by relaxation techniques such as dynamic mechanical and dielectric spectroscopies, rather than by DSC. In addition to the glass transition, the viscoelastic spectrum of poly(PDL) also shows two low‐temperature secondary relaxations centered at ?130 (γ) and ?90 °C (β). They are attributed to local motions of the long methylene sequence (γ) and complex units involving water associated with the ester groups (β). The mechanical properties of poly(PDL) are typical of a hard, tough material, with an elastic modulus and yield parameters comparable to those of low‐density polyethylene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1721–1729, 2001  相似文献   

9.
Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (?) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.  相似文献   

10.
Molecular ferroelectrics have displayed a promising future since they are light‐weight, flexible, environmentally friendly and easily synthesized, compared to traditional inorganic ferroelectrics. However, how to precisely design a molecular ferroelectric from a non‐ferroelectric phase transition molecular system is still a great challenge. Here we designed and constructed a molecular ferroelectric by double regulation of the anion and cation in a simple crown ether clathrate, 4 , [K(18‐crown‐6)]+[PF6]?. By replacing K+ and PF6? with H3O+ and [FeCl4]? respectively, we obtained a new molecular ferroelectric [H3O(18‐crown‐6)]+[FeCl4]?, 1 . Compound 1 undergoes a para‐ferroelectric phase transition near 350 K with symmetry change from P21/n to the Pmc21 space group. X‐ray single‐crystal diffraction analysis suggests that the phase transition was mainly triggered by the displacement motion of H3O+ and [FeCl4]? ions and twist motion of 18‐crown‐6 molecule. Strikingly, compound 1 shows high a Curie temperature (350 K), ultra‐strong second harmonic generation signals (nearly 8 times of KDP), remarkable dielectric switching effect and large spontaneous polarization. We believe that this research will pave the way to design and build high‐quality molecular ferroelectrics as well as their application in smart materials.  相似文献   

11.
Polymorphism of Bis(dineopentoxyphosphorothioyl)diselenide – Correlation of X‐Ray Structure and MAS NMR Data The crystal structures of two polymorphs of the title compound were determined by single‐crystal X‐ray methods and refined both at room temperature and 250 K. A triclinic and a monoclinic phase were discovered and studied. Both modifications are centrosymmetrical layer structures. The numerically clearly significant differences were observed in unit cell volumes as well as in alternating disproportions of distances of atoms being chemically and crystallographically equivalent as a result of discontinuously distributed conformational changes along the single bonds. Phase transitions were not observed by cooling up to 240 K. Lowering temperatures single crystals of both phases decompose because of the considerable anisotropy of intermolecular interaction. The small differences of molecular structure produce slightly splitted 31P CP MAS NMR signals. A comparison of the chemical shifts from 13C CP MAS NMR spectra and from quantum‐chemical calculations leads to the conclusion that the inner rotation around CH2–Cq bonds is not frozen in the solid state.  相似文献   

12.
Squaraines (SQs) with tunable emission in the solid state is of great importance for various demands; however a remaining challenge is emission quenching upon aggregation. Herein, a unique SQ, named as CIEE‐SQ, is designed to exhibit strong emission in crystal, undergoing crystallization‐induced reverse from dark 1(n+σ,π*) to bright 1(π,π*) excited states. Such an excited state of CIEE‐SQ can be subtly tuned by molecular conformation changes during the unexpected temperature‐triggered single‐crystal to single‐crystal (SCSC) reversible transformation. Furthermore, co‐crystallization between CIEE‐SQ and chloroform largely stabilize the 1(π,π*) state, enhancing the transition dipole moment and decreasing the reorganization energy to boost the fluorescence, which is promising in data encryption and decryption.  相似文献   

13.
There is a limited number of reports on mechanically responsive molecular crystals, including thermo‐responsive and light‐responsive crystals. Rigid ordered molecular crystals with a close‐packing structure are less able to accept distortion, which hampers the development of such molecular crystals. The thermosalient effect, or “crystal jumping”, refers to a thermo‐responsive system that converts heat into mechanical force by thermally induced phase transition. While they have recently attracted attention as potential highly efficient molecular actuators, less than two dozens of thermosalient molecular crystals have been reported to date, and the design of such molecules as well as how they assemble to express a thermosalient effect are unknown. Herein, we demonstrate how the cooperative molecular motion of twisted π units could serve to develop a thermo‐responsive jumping molecular crystal with a hydrogen‐bonded organic framework (HOF) of tetra[2,3]thienylene tetracarboxylic acid ( 1 ). The cooperative change in the molecular structure triggered by the desolvation of THF in the channel of the HOF structure induced not only a change in the structure of HOF but also mechanical force. Hydrogen bonding interactions contributed significant thermal stability to maintain the HOF assembly even with a dynamic structural change.  相似文献   

14.
The heterogeneous higher order structure and molecular motion in a single crystalline film of a vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer with 73 mol % VDF was investigated with the 1H–13C cross‐polarization/magic‐angle spinning NMR technique. A transient oscillation was observed in plots of the 13C peak intensity versus the contact time for the CH2, CHF, and CF2 groups. On the basis of the extended cross‐relaxation theory of spin diffusion, we determined that the oscillation behavior was caused by the TrFE‐rich segments in the chain and that the crystal consisted of VDF‐rich and TrFE‐rich domains. The former had TrFE‐rich segments in VDF and TrFE fractions of 0.24 and 0.27, respectively, and the latter had VDF‐rich segments in a VDF fraction of 0.49. The spin–lattice relaxation time T1ρH in the rotating frame for each group was minimal in the three temperature regions of β, αb, and αc (↑) on heating and in the two temperature regions of α1D and αc (↓) on cooling. The αc (↑) and αc (↓) processes depended on the first‐order ferroelectric phase‐transition regions on heating and cooling, respectively. The motional modes for the other processes were confirmed by the T1ρH minimum behavior of the VDF and TrFE groups in the TrFE‐rich domain and the VDF‐rich segments in the VDF‐rich domain. The β and αb processes were attributed to the flip–flop motion of the TrFE‐rich segments and the competitive motion of the TrFE‐ and VDF‐rich segments in the ferroelectric phase, respectively. The α1D process was due to the one‐dimensional diffusion motion of the conformational defects along the chain in the paraelectric phase, accompanied by the trans and gauche transformation of the VDF conformers of ttg+tg? and g+tg?tt. The effect of the competitive motion of the TrFE‐rich segment on the thermal stability of the VDF‐rich segment in the chain near the Curie temperature was examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1026–1037, 2002  相似文献   

15.
tert‐Butoxy­carbonyl­glycyl‐dehydro­alanyl‐glycine methyl ester (systematic name: methyl {2‐[(tert‐butoxycarbonylamino)­acetamido]prop‐2‐enamido}acetate) (Boc0‐Gly1‐ΔAla2‐Gly3‐OMe), C13H21N3O6, has been structurally characterized by single‐crystal X‐ray diffraction and by density functional theory (DFT) calculations at the B3LYP/6–311+G** level. The peptide chain in both the solid‐state and calculated structures adopts neither β nor γ turns. All amino acid residues in the tripeptide sequence are linked trans to each other. The bond lengths and valence angles of the amino acid units in the crystal structure and gas phase are comparable. However, the conformation of the third glycyl residue (Gly3) is different in the crystalline state and in the gas phase. It is stabilized in the calculated structure by an additional intra­molecular short contact between Gly3 NH and methyl ester COMe groups.  相似文献   

16.
Nucleophilic substitution of F atoms in 5,6‐difluorobenzo[c ][1,2,5]thiadiazole (DFBT) for carbazole could be potentially interesting as a novel way of synthesizing building blocks for new conjugated materials for applications in organic chemistry. The crystal structures of 5,6‐bis(9H‐carbazol‐9‐yl)benzo[c ][1,2,5]thiadiazole (DCBT), C30H18N4S, and its hydrate, C30H18N4S·0.125H2O, were investigated using single‐crystal X‐ray analysis. The hydrate contains two symmetry‐independent DCBT molecules. The dihedral angles between the plane of the central benzothiadiazole fragment and that of the carbazole units vary between 50.8 and 69.9°, indicating conformational flexibility of the DCBT molecule in the crystals, which is consistent with quantum chemical calculations. The analysis of the crystal packing of DCBT revealed that the experimental triclinic structure could be described as a distortion from a hypothetical higher‐symmetry monoclinic structure. The quantum chemical calculations of two possible monoclinic structures, which are related to the experimental structure by a shifting of molecular layers, showed that the proposed structures are higher in energy by 5.4 and 10.1 kcal mol−1. This energy increase is caused by less dense crystal packings of the symmetric structures, which results in a decrease of the number of intermolecular interactions.  相似文献   

17.
Dielectric switches that can be converted between high and low dielectric states by thermal stimuli have attracted much interest owing to their many potential applications. Currently one main drawback for practical application lies in the non‐tunability of their switch temperatures (TS). We report here an ionic co‐crystal (Me3NH)4[Ni(NCS)6] that contains a multiply rotatable Me3NH+ ion and a solely rotatable one due to a more spacious supramolecular cage for the former one. This compound undergoes an isostructural order–disorder phase transition and it can function as a frequency‐tuned dielectric switch with highly adjustable TS, which is further revealed by the variable‐temperature structure analyses and molecular dynamics simulations. In addition, the distinct arrangements and molecular dynamics of two coexisting Me3NH+ ions confined in different lattice spaces as well as the notable offset effect on the promoting/hindering of dipolar reorientation after dielectric transition provide a rarely observed but fairly good model for understanding and modulating the dipole motion in crystalline environment.  相似文献   

18.
Dielectric switches that can be converted between high and low dielectric states by thermal stimuli have attracted much interest owing to their many potential applications. Currently one main drawback for practical application lies in the non‐tunability of their switch temperatures (TS). We report here an ionic co‐crystal (Me3NH)4[Ni(NCS)6] that contains a multiply rotatable Me3NH+ ion and a solely rotatable one due to a more spacious supramolecular cage for the former one. This compound undergoes an isostructural order–disorder phase transition and it can function as a frequency‐tuned dielectric switch with highly adjustable TS, which is further revealed by the variable‐temperature structure analyses and molecular dynamics simulations. In addition, the distinct arrangements and molecular dynamics of two coexisting Me3NH+ ions confined in different lattice spaces as well as the notable offset effect on the promoting/hindering of dipolar reorientation after dielectric transition provide a rarely observed but fairly good model for understanding and modulating the dipole motion in crystalline environment.  相似文献   

19.
On cooling from the melt, poly(4,4′‐phthaloimidobenzoylnonamethyleneoxycarbonyl) (PEIM‐9) forms a monotropic, smectic liquid crystal phase (Ti = 369.2 K). The main driving force for this mesophase formation is the attainment of nanophase separation of the mobile nonamethylene spacer from the geometrically rigid, but irregular, phthaloimidobenzoyl group, coupled with partial conformational ordering of the CH2 groups (about 20% of the CH2 groups attain trans‐conformations). It is shown by nuclear magnetic resonance that PEIM‐9 consists at room temperature of two motionally distinguishable components. One is the liquid crystal that remains mobile to its glass transition temperature (Tg ≈ 323 K), the other a more rigid crystal with a large degree of conformational disorder. In this crystal phase (Tm ≈ 415 K) the conformationally disordered nonamethylene spacer has a similar amount of disorder than in the liquid crystal phase and the phthaloimidobenzoyl group is also not fully ordered. Even after long‐term annealing, all molecules remain conformationally disordered, but Tm increases to about ≈ 437 K.  相似文献   

20.
Classical molecular dynamics simulations were carried out to investigate the hydrophilic to hydrophobic transition of PNIPAM‐co‐PEGMA close to its lower critical solution temperature (LCST) in 1 M NaCl solution. PNIPAM‐co‐PEGMA is a copolymer of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene glycol) methacrylate (PEGMA). The copolymer consists of 38 monomer units of NIPAM with two PEGMA chains attached to the PNIAPM backbone. The PNIPAM‐co‐PEGMA was observed to go through the hydrophilic?hydrophobic conformational change for simulations at temperature slightly above its LCST. Na+ ions were found to bind strongly and directly with amide O, even more strongly with the O atoms on PEGAMS chains, whereas Cl? ions only exhibit weak interaction with the polymer. Significantly a novel caged stable metal‐organic complex involving a Na+ ion coordinated by six O atoms from the copolymer was observed after the PNIPAM‐co‐PEGMA copolymer went through conformational transition to form a hydrophobic folded structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号