首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bis(μ‐oxo)dicopper(III) species [CuIII2(μ‐O)2(m‐XYLMeAN)]2+ ( 1 ) promotes the electrophilic ortho‐hydroxylation–defluorination of 2‐fluorophenolates to give the corresponding catechols, a reaction that is not accomplishable with a (η22‐O2)dicopper(II) complex. Isotopic labeling studies show that the incoming oxygen atom originates from the bis(μ‐oxo) unit. Ortho‐hydroxylation–defluorination occurs selectively in intramolecular competition with other ortho‐substituents such as chlorine or bromine.  相似文献   

2.
3.
We report the CuI/O2 chemistry of complexes derived from the macrocylic ligands 14‐TMC (1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane) and 12‐TMC (1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane). While [(14‐TMC)CuI]+ is unreactive towards dioxygen, the smaller analog [(12‐TMC)CuI(CH3CN)]+ reacts with O2 to give a side‐on bound peroxo‐dicopper(II) species (SP), confirmed by spectroscopic and computational methods. Intriguingly, 12‐TMC as a N4 donor ligand generates SP species, thus in contrast with the previous observation that such species are generated by N2 and N3 ligands. In addition, the reactivity of this macrocyclic side‐on peroxo‐dicopper(II) differs from typical SP species, because it reacts only with acid to release H2O2, in contrast with the classic reactivity of Cu2O2 cores. Kinetics and computations are consistent with a protonation mechanism whereby the TMC acts as a hemilabile ligand and shuttles H+ to an isomerized peroxo core.  相似文献   

4.
5.
6.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

7.
Two D–π–A copolymers, based on the benzo[1,2‐b:4,5‐b′]‐dithiophene (BDT) as a donor unit and benzo‐quinoxaline (BQ) or pyrido‐quinoxaline (PQ) analog as an acceptor (PBDT‐TBQ and PBDT‐TPQ), were designed and synthesized as a p‐type material for bulk heterojunction (BHJ) photovoltaic cells. When compared with the PBDT‐TBQ polymer, PBDT‐TPQ exhibits stronger intramolecular charge transfer, showing a broad absorption coverage at the red region and narrower optical bandgap of 1.69 eV with a relatively low‐lying HOMO energy level at ?5.24 eV. The experimental data show that the exciton dissociation efficiency of PBDT‐TPQ:PC71BM blend is better than that in the PBDT‐TBQ:PC71BM blend, which can explain that the IPCE spectra of the PBDT‐TPQ‐based solar cell were higher than that of the PBDT‐TBQ‐based solar cell. The maximum efficiency of PBDT‐TPQ‐based device reaches 4.40% which is much higher than 2.45% of PBDT‐TBQ, indicating that PQ unit is a promising electron‐acceptor moiety for BHJ solar cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1822–1833  相似文献   

8.
Treatment of the digallium compound R2Ga–GaR2 [ 1 , R = CH(SiMe3)2] with a broad variety of functionalized carboxylic acids in the presence of water yielded μ‐hydroxo‐μ‐carboxylatodigallium compounds ( 2 – 10 ) containing intact Ga–Ga bonds in high to moderate yields. The compounds form dimeric formula units in which the unsupported Ga–Ga bonds are bridged by two hydroxo and two carboxylato ligands. Each gallium atom is terminally coordinated by a bulky alkyl group. NMR spectroscopy revealed mixtures of two isomeric compounds in solution in all cases. The second component may show a different bridging mode with each Ga–Ga bond bridged by a bidentate carboxylato ligand to form Ga2O2C five‐membered heterocycles.  相似文献   

9.
The use of picolinic acid amide derivatives as an effective family of bidentate ligands for copper‐catalysed aryl ether synthesis is reported. A fluorine‐substituted ligand gave good results in the synthesis of a wide range of aryl ethers. Even bulky phenols, known to be very challenging substrates, were shown to react with aryl iodides with excellent yields using these ligands. At the end of the reaction, the first examples of end‐of‐life Cu species were isolated and identified as CuII complexes with several of the anionic ligands tested. A preliminary mechanistic investigation is reported that suggests that the substituents on the ligands might have a crucial role in determining the redox properties of the metal centre and, consequently, its efficacy in the coupling process. An understanding of these effects is important for the development of new efficient and tunable ligands for copper‐based chemistry.  相似文献   

10.
11.
Mononuclear MnIII–peroxo and dinuclear bis(μ‐oxo)MnIII2 complexes that bear a common macrocyclic ligand were synthesized by controlling the concentration of the starting MnII complex in the reaction of H2O2 (i.e., a MnIII–peroxo complex at a low concentration (≤1 mM ) and a bis(μ‐oxo)MnIII2 complex at a high concentration (≥30 mM )). These intermediates were successfully characterized by various physicochemical methods such as UV–visible spectroscopy, ESI‐MS, resonance Raman, and X‐ray analysis. The structural and spectroscopic characterization combined with density functional theory (DFT) calculations demonstrated unambiguously that the peroxo ligand is bound in a side‐on fashion in the MnIII–peroxo complex and the Mn2O2 diamond core is in the bis(μ‐oxo)MnIII2 complex. The reactivity of these intermediates was investigated in electrophilic and nucleophilic reactions, in which only the MnIII–peroxo complex showed a nucleophilic reactivity in the deformylation of aldehydes.  相似文献   

12.
13.
By combining NMR spectroscopy, transmission electron microscopy, and circular dichroism we have identified the structural determinants involved in the interaction of green tea catechins with Aβ1–42, PrP106–126, and ataxin‐3 oligomers. The data allow the elucidation of their mechanism of action, showing that the flavan‐3‐ol unit of catechins is essential for interaction. At the same time, the gallate moiety, when present, seems to increase the affinity for the target proteins. These results provide important information for the rational design of new compounds with anti‐amyloidogenic activity and/or molecular tools for the specific targeting of amyloid aggregates in vivo.  相似文献   

14.
A series of N‐heterocyclic carbene–PdCl2–imidazole [NHC–Pd(II)–Im] complexes were synthesized and the structure of most of them was unambiguously determined by X‐ray single‐crystal diffraction. The structure–activity relationship of these complexes was investigated for the Suzuki–Miyaura coupling between 4‐methoxyphenyl chloride and phenylboronic acid, and the effect of the NHCs and Im moieties were fully discussed. The sterically hindered IPr‐based complex showed the highest catalytic activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Diphosphine‐bridged dicopper(I) acetate complexes [Cu2(μ‐dppm)2(μ‐OAc)]X ( 2 X; X? = , ) and [Cu2(μ‐dppm)2(μ‐OAc)(MeCN)]X ( 4 X) were prepared and the structures of 2 (PF6 ) and 4 (PF6 ) determined by X‐ray crystallography. The ground‐state geometries of [Cu2(μ‐dppm)2(μ‐OAc)]+ and [Cu2(μ‐dppm)2(μ‐OAc)(L)]+ (L = py, MeCN, THF, acetone, MeOH) were also obtained using density functional theory (DFT). The increased Cu – Cu distances found experimentally and theoretically by comparing the structures of cation [Cu2(μ‐dppm)2(μ‐OAc)]+ and its derivatives [Cu2(μ‐dppm)2(μ‐OAc)(L)]+ reflect the binding of various sigma donors (L). When using [Cu2(μ‐dppm)2(μ‐OAc)]+ as a structure sensor, the electron‐donating strength of a sigma donor can be quantitatively expressed as a DFT‐calculated Cu – Cu distance with the relative strength in the order py > MeCN > THF > acetone > MeOH, as determined.  相似文献   

16.
High ligand mobility is shown by the coordinatively unsaturated nickel(I ) compound 1 with a short Ni–Ni distance and an asymmetric CO bridge. The thio homologue 2 contains the novel (thiocarbonyl)trimethylphosphorane bridging ligand, which sits like a “stork's nest” on top of the roof-shaped dinuclear complex. In contrast to 1 , complex 2 does not show fluctional behavior and can be methylated without decomposition. X=Cl, Me.  相似文献   

17.
The human lectin galectin‐1 (hGal‐1) translates sugar signals, that is, β‐galactosides, into effects on the level of cells, for example, growth regulation, and has become a model for studying binding of biopharmaceutically relevant derivatives. Bound‐state conformations of Galβ‐C‐(1→3)‐Glcβ‐OMe ( 1 ) and its βGal‐(1→3)‐βGlc‐OMe disaccharide parent compound were studied by using NMR spectroscopy (transferred (TR)‐NOESY data), assisted by docking experiments and molecular dynamics (MD) simulations. The molecular recognition process involves a conformational selection event. Although free C‐glycoside access four distinct conformers in solution, hGal‐1 recognizes shape of a local minimum of compound 1 , the synΦ/synΨ conformer, not the structure at global minimum. MD simulations were run to explain, in structural terms, the observed geometry of the complex.  相似文献   

18.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

19.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

20.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号