首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用溶胶-凝胶法制备了一系列La1-xSrxNi1-yFeyO3 (x=0, 0.1, 0.2, 0.5; y=0~1.0)型的钙钛矿催化剂, 以活性碳为载体, PTFE乳液为粘接剂制备双功能氧电极. 对催化剂进行了XRD结构分析以及SEM分析和BET比表面积测量. 采用三电极体系测试了氧电极的稳态极化曲线和电化学交流阻抗谱并对其阴极极化和阳极极化的交流阻抗谱图进行分析. 通过等效电路的拟合研究了该系列双功能氧电极氧还原反应的工作机理. 实验表明对于LaNiO3化合物, B位掺杂可显著提高催化剂的电催化性能; 电极氧还原反应的极化主要由电荷转移反应和Nernstian扩散过程造成. 通过各个电极对于催化分解H2O2的分解速率常数的测定得知, Ni离子对于催化H2O2分解反应的活性大于Fe离子, 继续在对于氧还原反应和氧析出反应都具有较高电催化活性的LaNi0.8Fe0.2O3催化剂上进行A位掺杂Sr离子后显著提高了催化剂分解H2O2的催化活性, 主要是因为氧空位的增多和金属离子d电子含量的降低有利于催化分解H2O2的活性的提高, 但由于氧空位的增多导致催化剂电导率的降低, 所以其电催化活性降低了. 通过多圈循环伏安扫描的测试, 催化剂LaNi0.8Fe0.2O3有很好的稳定性.  相似文献   

2.
The perovskite SrNb0.1Co0.7Fe0.2O3?δ (SNCF) is a promising OER electrocatalyst for the oxygen evolution reaction (OER), with remarkable activity and stability in alkaline solutions. This catalyst exhibits a higher intrinsic OER activity, a smaller Tafel slope and better stability than the state‐of‐the‐art precious‐metal IrO2 catalyst and the well‐known BSCF perovskite. The mass activity and stability are further improved by ball milling. Several factors including the optimized eg orbital filling, good ionic and charge transfer abilities, as well as high OH? adsorption and O2 desorption capabilities possibly contribute to the excellent OER activity.  相似文献   

3.
Comparison of LaFeO3, La0.8Sr0.2FeO3, and La0.8Sr0.2Fe0.9CO0.1O3 perovskite oxides as oxygen carrier for partial oxidation of methane in the absence of gaseous oxygen was investigated by continuous flow reaction and sequential redox reaction, Methane was oxidized to syngas with high selectivity by oxygen species of perovskite oxides in the absence of gaseous oxygen. The sequential redox reaction revealed that the structural stability and continuous oxygen supply in redox reaction decreased over La0.8Sr0.2Fe0.9Co0. 1O3 oxide, while LaFeO3 and La0.8Sr0.2FeO3 exhibited excellent structural stability and continuous oxygen supply.  相似文献   

4.
《化学:亚洲杂志》2017,12(8):882-889
Ag0.5La0.5TiO3 with an ABO3 perovskite structure was synthesized by a newly developed ion‐exchange method. Molten Ag2SO4 instead of traditional molten AgNO3 was used as Ag+ source in view of its high decomposition temperature (1052 °C), thereby guaranteeing the complete substitution of Ag+ for Na+ in Na0.5La0.5TiO3 with a stable ABO3 perovskite structure at a high ion‐exchange temperature (700 °C). Under full‐arc irradiation, the O2‐evolution activity of Ag0.5La0.5TiO3 was about 1.6 times that of Na0.5La0.5TiO3 due to the optimized electronic band structures and local lattice structures. On the one hand, the substitution of Ag+ for Na+ elevated the VBM and thus narrowed the band gap from 3.19 to 2.83 eV, thereby extending the light‐response range and, accordingly, enhancing the photoexcitation to generate more charge carriers. On the other hand, the substitution of Ag+ for Na+ induced a lattice distortion of the ABO3 perovskite structure, thereby promoting the separation and migration of charge carriers. Moreover, under visible‐light irradiation, Ag0.5La0.5TiO3 displayed notable O2 evolution whereas Na0.5La0.5TiO3 showed little O2 evolution, thus demonstrating that the substitution of Ag+ for Na+ enabled the use of visible light to evolve O2 photocatalytically. This work presents an effective route to explore novel Ag‐based photocatalysts.  相似文献   

5.
For rechargeable metal–air batteries, which are a promising energy storage device for renewable and sustainable energy technologies, the development of cost-effective electrocatalysts with effective bifunctional activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been a challenging task. To realize highly effective ORR and OER electrocatalysts, we present a hybrid catalyst, Co3O4-infiltrated La0.5Sr0.5MnO3-δ (LSM@Co3O4), synthesized using an electrospray and infiltration technique. This study expands the scope of the infiltration technique by depositing ~18 nm nanoparticles on unprecedented ~70 nm nano-scaffolds. The hybrid LSM@Co3O4 catalyst exhibits high catalytic activities for both ORR and OER (~7 times, ~1.5 times, and ~1.6 times higher than LSM, Co3O4, and IrO2, respectively) in terms of onset potential and limiting current density. Moreover, with the LSM@Co3O4, the number of electrons transferred reaches four, indicating that the catalyst is effective in the reduction reaction of O2 via a direct four-electron pathway. The study demonstrates that hybrid catalysts are a promising approach for oxygen electrocatalysts for renewable and sustainable energy devices.  相似文献   

6.
《化学:亚洲杂志》2017,12(22):2956-2961
Developing efficient non‐noble metal and earth‐abundant electrocatalysts with tunable microstructures for overall water splitting is critical to promote clean energy technologies for a hydrogen economy. Herein, novel three‐dimensional (3D) flower‐like Ni2P composed of mesoporous nanoplates with controllable morphology and high surface area was prepared by a hydrothermal method and low‐temperature phosphidation as efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the urchin‐like Nix Py , the 3D flower‐like Ni2P with a diameter of 5 μm presented an efficient and stable catalytic performance in 0.5 m H2SO4, with a small Tafel slope of 79 mV dec−1 and an overpotential of about 240 mV at a current density of 10 mA cm−2 with a mass loading density of 0.283 mg cm−2. In addition, the catalyst also exhibited a remarkable performance for the OER in 1.0 m KOH electrolyte, with an overpotential of 320 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 72 mV dec−1. The excellent catalytic performance of the as‐prepared Ni2P may be ascribed to its novel 3D morphology with unique mesoporous structure.  相似文献   

7.
Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal–air batteries. It is highly challenging but desirable to develop low‐cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden–Popper family of Lan+1NinO3n+1 (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni?O bond lengths and the hyperstoichiometric oxides in the rock‐salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH? content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.  相似文献   

8.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

9.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx‐Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co?S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx‐Vo‐S to exhibit much superior OER activity. FeCoOx‐Vo‐S exhibits a mass activity of 2440.0 A g?1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec?1, indicative of its excellent charge transfer rate. When FeCoOx‐Vo‐S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm?2 and 406.0 mA cm?2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   

10.
Oxygen dissociation on metal oxides is a key reaction step, limiting the efficiency of numerous technologies. The complexity of the multi‐step oxygen reduction reaction (ORR) makes it difficult to investigate the oxygen dissociation step independently. Direct observation of the oxygen dissociation process is described, quantitatively, on perovskites La0.6Sr0.4Co0.2Fe0.8O3‐δ and (La0.8Sr0.2)0.95MnO3±δ, using gas‐phase isotope‐exchange with a 1:1 16O2:18O2 ratio. Oxygen transport mechanisms between gas–surface reactions and surface–bulk exchange are deconvoluted. Our findings show that regardless of participation of lattice oxygen, La0.6Sr0.4Co0.2Fe0.8O3‐δ is better at oxygen dissociation than (La0.8Sr0.2)0.95MnO3±δ. Heteroexchange, involving lattice oxygen, dominates on La0.6Sr0.4Co0.2Fe0.8O3‐δ. In contrast, (La0.8Sr0.2)0.95MnO3±δ shows both homoexchange and heteroexchange, with the latter only happening above 600 °C. Using a 1:1 isotope mixture, a simple method is presented for separation of the oxygen dissociation step from the overall ORR.  相似文献   

11.
Perovskite‐type oxides based on rare‐earth metals containing lanthanum manganate are promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline electrolyte. Perovskite‐type LaMnO3 shows excellent ORR performance, but poor OER activity. To improve the OER performance of LaMnO3, the element cobalt is doped into perovskite‐type LaMnO3 through a sol–gel method followed by a calcination process. To assess electrocatalytic activities for the ORR and OER, a series of LaMn1?xCoxO3 (x=0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) perovskite oxides were synthesized. The results indicate that the amount of doped cobalt has a significant effect on the catalytic performance of LaMn1?xCoxO3. If x=0.3, LaMn0.7Co0.3O3 not only shows a tolerable electrocatalytic activity for the ORR, but also exhibits a great improvement (>200 mV) on the catalytic activity for the OER; this indicates that the doping of cobalt is an effective approach to improve the OER performance of LaMnO3. Furthermore, the results demonstrate that LaMn0.7Co0.3O3 is a promising cost‐effective bifunctional catalyst with high performance in the ORR and OER for application in hybrid Li?O2 batteries.  相似文献   

12.
The total electrical conductivity and the Seebeck coefficient of perovskite phases La0.3Sr0.7Fe1−xGaxO2.65+δ (x=0-0.4) were determined as functions of oxygen nonstoichiometry in the temperature range 650-950°C at oxygen partial pressures varying from 10−4 to 0.5 atm. Doping with gallium was found to decrease oxygen content, p-type electronic conduction and mobility of electron holes. The results on the oxygen nonstoichiometry and electrical properties clearly show that the role of gallium cations in the lattice is not passive, as it could be expected from the constant oxidation state of Ga3+. The nonstoichiometry dependencies of the partial molar enthalpy and entropy of oxygen in La0.3Sr0.7(Fe,Ga)O2.65+δ are indicative of local inhomogeneities, such as local lattice distortions or defect clusters, induced by gallium incorporation. Due to B-site cation disorder, this effect may be responsible for suppressing long-range ordering of oxygen vacancies and for enhanced stability of the perovskite phases at low oxygen pressures, confirmed by high-temperature X-ray diffraction and Seebeck coefficient data. The values of the electron-hole mobility in La0.3Sr0.7(Fe,Ga)O2.65+δ, which increases with temperature, suggest a small-polaron conduction mechanism.  相似文献   

13.
Surface lattice oxygen in transition‐metal oxides plays a vital role in catalytic processes. Mastering activation of surface lattice oxygen and identifying the activation mechanism are crucial for the development and design of advanced catalysts. A strategy is now developed to create a spinel Co3O4 /perovskite La0.3Sr0.7CoO3 interface by in situ reconstruction of the surface Sr enrichment region in perovskite LSC to activate surface lattice oxygen. XAS and XPS confirm that the regulated chemical interface optimizes the hybridized orbital between Co 3d and O 2p and triggers more electrons in oxygen site of LSC transferred into lattice of Co3O4 , leading to more inactive O2? transformed into active O2?x. Furthermore, the activated Co3O4/LSC exhibits the best catalytic activities for CO oxidation, oxygen evolution, and oxygen reduction. This work would provide a fundamental understanding to explain the activation mechanism of surface oxygen sites.  相似文献   

14.
Li‐O2 batteries are promising energy storage systems due to their ultra‐high theoretical capacity. However, most Li‐O2 batteries are based on the reduction/oxidation of Li2O2 and involve highly reactive superoxide and peroxide species that would cause serious degradation of cathodes, especially carbon‐based materials. It is important to explore lithium‐oxygen reactions and find new Li‐O2 chemistry which can restrict or even avoid the negative influence of superoxide/peroxide species. Here, inspired by enzyme‐catalyzed oxygen reduction/oxidation reactions, we introduce a copper(I) complex 3 N‐CuI (3 N=1,4,7‐trimethyl‐1,4,7‐triazacyclononane) to Li‐O2 batteries and successfully modulate the reaction pathway to a moderate one on reversible cleavage/formation of O?O bonds. This work demonstrates that the reaction pathways of Li‐O2 batteries could be modulated by introducing an appropriate soluble catalyst, which is another powerful choice to construct better Li‐O2 batteries.  相似文献   

15.
Ba0.9R0.1Co0.7Fe0.225Ta0.075O3-δ (BRCFT, R = Ca, La or Sr) membranes were synthesized by a solid-state reaction. Metal cation Ca2+, La3+ or Sr2+ doping on A-site partially substituted Ba2+ in BaCo0.7Fe0.225Ta0.075O3-δ oxides, and its subsequent effects on phase structure stability, oxygen permeability and oxygen desorption were systematically investigated by XRD, TG-DSC, H2-TPR, O2-TPD techniques and oxygen permeation experiments. The partial substitution with Ca2+, La3+ or Sr2+, whose ionic radii are smaller than that of Ba2+, succeeded in stabilizing the cubic perovskite structure without formation of impurity phases, as revealed by XRD analysis. Oxygen-involving experiments showed that BRCFT with A-site fully occupied by Ba2+ exhibited good oxygen permeation flux under He flow, reaching about 2.3 mL·min−1 ·cm−2 at 900 °C with 1 mm thickness. Of all the membranes, BLCFT membrane showed better chemical stability in CO2, owing to the reduction in alkalinity of the mixed conductor oxide by La doping. In addition, we also found the stability of the perovskite structure under reducing atmospheres was strengthened by increasing the size of A-site cation (Ba2+>La3+>Sr2+>Ca2+).  相似文献   

16.
The electrocatalysis of the oxygen reduction reaction by lanthanum-strontium manganate La0.5Sr0.5MnO3 (LSM) has been studied by cyclic voltammetry using the rotating ring-disc electrode technique (RRDE) in alkaline medium. From the ring-disc data and other kinetic parameters it was concluded that the oxygen reduction occurs by dissociative chemisorption at low overpotentials. At higher overpotentials, the formation of hydrogen peroxide (HO2 in this case) on the electrocatalyst has been observed. The apparent exchange current density for oxygen reduction on LSM has been found to be 2 × 10−7 A cm−2, while the corresponding Tafel slope is 0.100 V per decade. The possible reaction mechanism for electroreduction of oxygen on this oxide catalyst has been discussed. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 7, pp. 919–923. The text was submitted by the authors in English.  相似文献   

17.
Photo–thermo catalysis, which integrates photocatalysis on semiconductors with thermocatalysis on supported nonplasmonic metals, has emerged as an attractive approach to improve catalytic performance. However, an understanding of the mechanisms in operation is missing from both the thermo‐ and photocatalytic perspectives. Deep insights into photo–thermo catalysis are achieved via the catalytic oxidation of propane (C3H8) over a Pt/TiO2‐WO3 catalyst that severely suffers from oxygen poisoning at high O2/C3H8 ratios. After introducing UV/Vis light, the reaction temperature required to achieve 70 % conversion of C3H8 lowers to a record‐breaking 90 °C from 324 °C and the apparent activation energy drops from 130 kJ mol?1 to 11 kJ mol?1. Furthermore, the reaction order of O2 is ?1.4 in dark but reverses to 0.1 under light, thereby suppressing oxygen poisoning of the Pt catalyst. An underlying mechanism is proposed based on direct evidence of the in‐situ‐captured reaction intermediates.  相似文献   

18.
Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3; the former exhibit a low onset overpotential of 380 mV at 10 mA cm−2 and a small Tafel slope of 70.8 mV dec−1. Oxygen vacancy formation is accompanied by mixed Ni2+/Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.  相似文献   

19.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

20.
A study of the oxygen reduction reaction (ORR) on a screen printed carbon electrode surface mediated by the tricopper cluster complex Cu3(7‐N‐Etppz(CH2OH)) dispersed on electrochemically reduced carbon black, where 7‐N‐Etppz(CH2OH) is the ligand 3,3′‐(6‐(hydroxymethyl)‐1,4‐diazepane‐1,4‐diyl)bis(1‐(4‐ethyl piperazin‐1‐yl)propan‐2‐ol), is described. Onset oxygen reduction potentials of about 0.92 V and about 0.77 V are observed at pH 13 and pH 7 vs. the reversible hydrogen electrode, which are comparable to the best values reported for any synthetic copper complex. Based on half‐wave potentials (E1/2), the corresponding overpotentials are about 0.42 V and about 0.68 V, respectively. Kinetic studies indicate that the trinuclear copper catalyst can accomplish the 4 e? reduction of O2 efficiently and the ORR is accompanied by the production of only small amounts of H2O2. The involvement of the copper triad in the O2 activation process is also verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号