首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid‐derived novel norbornene derivatives, N,N′‐(endo‐bicyclo[2.2.1] hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐alanine methyl ester (NBA), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐leucine methyl ester (NBL), N,N′‐(endo‐bicyclo[2.2.1]hept‐5‐en‐2,3‐diyldicarbonyl) bis‐L ‐phenylalanine methyl ester (NBF) were synthesized and polymerized using the Grubbs 2nd generation ruthenium (Ru) catalyst. Although NBA, NBL, and NBF did not undergo homopolymerization, they underwent copolymerization with norbornene (NB) to give the copolymers with Mn ranging from 5200 to 38,100. The maximum incorporation ratio of the amino acid‐based unit was 9%, and the cis contents of the main chain were 54–66%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5337–5343, 2006  相似文献   

2.
Hydrogen bonding self‐assemblies were formed in an aqueous medium from a pair of an amphiphilic ABA triblock copolymer and a hydrophobic homopolymer, both with a triple hydrogen bonding site that was complementary to each other and precisely placed at the main‐chain center: (PEGMA)m–(MMA)n– ADA –(MMA)n–(PEGMA)m and (MMA)p– DAD –(MMA)p ( A = hydrogen acceptor; D = hydrogen donor; PEGMA: PEG methacrylate; MMA: methyl methacrylate). The polymers were synthesized by the ruthenium‐catalyzed living radial polymerization with bifunctional initiators (Br– ADA –Br and Cl– DAD –Cl) aiming at pinpoint chain center functionalization to give a symmetric segmental sequence; ADA and DAD initiators were derived from 2,6‐diaminopyridine and thymine, respectively. On mixed equimolar in tetrahydrofuran (THF), both polymers spontaneously associated, and the apparently 1:1 assembly further grew into higher aggregate particles on subsequent addition of water. The aggregates in water/THF were relatively stable and uniform in size, which most likely stems from the intermolecular complementary hydrogen bond interaction at polymer chain centers. In sharp contrast, an equimolar mixture of ADA ‐block polymer and DAD ‐free poly(MMA) in water/THF resulted in larger and irregular particles, and thus short‐lived to eventually collapse. These results indicate that, however structurally marginal, precise pinpoint functionalization of macromolecular chains allows stable self‐assemblies via complementary hydrogen bond interaction even in aqueous media. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4498–4504  相似文献   

3.
The crystal structure of a protected l ‐tyrosine, namely N‐acetyl‐l ‐tyrosine methyl ester monohydrate, C12H15NO4·H2O, was determined at both 293 (2) and 123 (2) K. The structure exhibits a network of O—H...O and N—H...O hydrogen bonds, in which the water molecule plays a crucial role as an acceptor of one and a donor of two hydrogen bonds. Molecules of water and of the protected l ‐tyrosine form hydrogen‐bonded layers perpendicular to [001]. C—H...π interactions are observed in the hydrophobic regions of the structure. The structure is similar to that of N‐acetyl‐l ‐tyrosine ethyl ester monohydrate [Soriano‐García (1993). Acta Cryst. C 49 , 96–97].  相似文献   

4.
Novel 4‐ethynylphthaloyl amino acid esters carrying different terminal groups, 4‐ethynylphthaloyl glycine (1S,2R,5S)‐menthyl ester ( 1 ), 4‐ethynylphthaloyl glycine (1R,2S,5R)‐menthyl ester ( 2 ), 4‐ethynylphthaloyl L ‐leucine methyl ester ( 3 ), 4‐ethynylphthaloyl L ‐leucine (1S,2R,5S)‐menthyl ester ( 4 ), 4‐ethynylphthaloyl L ‐leucine (1R,2S,5R)‐menthyl ester ( 5 ) were synthesized and polymerized with a rhodium catalyst. Polymers with high molecular weights were obtained in 71–92% yields. The helical conformation of the polymers could be tuned by the chirality of the amino acid connected to the backbone, together with the chirality and bulkiness of the terminal pendent groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4183–4192, 2008  相似文献   

5.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

6.
The crystal structure of methyl 2‐acetamido‐2‐deoxy‐β‐d ‐glycopyranosyl‐(1→4)‐β‐d ‐mannopyranoside monohydrate, C15H27NO11·H2O, was determined and its structural properties compared to those in a set of mono‐ and disaccharides bearing N‐acetyl side‐chains in βGlcNAc aldohexopyranosyl rings. Valence bond angles and torsion angles in these side chains are relatively uniform, but C—N (amide) and C—O (carbonyl) bond lengths depend on the state of hydrogen bonding to the carbonyl O atom and N—H hydrogen. Relative to N‐acetyl side chains devoid of hydrogen bonding, those in which the carbonyl O atom serves as a hydrogen‐bond acceptor display elongated C—O and shortened C—N bonds. This behavior is reproduced by density functional theory (DFT) calculations, indicating that the relative contributions of amide resonance forms to experimental C—N and C—O bond lengths depend on the solvation state, leading to expectations that activation barriers to amide cistrans isomerization will depend on the polarity of the environment. DFT calculations also revealed useful predictive information on the dependencies of inter‐residue hydrogen bonding and some bond angles in or proximal to β‐(1→4) O‐glycosidic linkages on linkage torsion angles ? and ψ. Hypersurfaces correlating ? and ψ with the linkage C—O—C bond angle and total energy are sufficiently similar to render the former a proxy of the latter.  相似文献   

7.
In methyl β‐d ‐fructopyranoside, C7H14O6, the thermodynamically most stable methyl glycoside of the ketose d ‐fructose, the pyranose ring is close to being an ideal 2C5 chair. The compound forms bilayers involving a complex hydrogen‐bonding pattern of five independent hydrogen bonds. Graph‐set analysis was applied to distinguish the hydrogen‐bond patterns at unary and higher level graph sets.  相似文献   

8.
The NCN‐pincer Pd‐complex‐bound norvalines Boc‐D /L ‐[PdCl(dpb)]Nva‐OMe ( 1 ) were synthesized in multigram quantities. The molecular structure and absolute configuration of 1 were unequivocally determined by single‐crystal X‐ray structure analysis. The robustness of 1 under acidic/basic conditions provides a wide range of N‐/C‐terminus convertibility based on the related synthetic transformations. Installation of a variety of functional groups into the N‐/C‐terminus of 1 was readily carried out through N‐Boc‐ or C‐methyl ester deprotection and subsequent condensations with carboxylic acids, R1COOH, or amines, R2NH2, to give the corresponding N‐/C‐functionalized norvalines R1‐D /L ‐[PdCl(dpb)]Nva‐R2 2 – 9 . The dipeptide bearing two Pd units 10 was successfully synthesized through the condensation of C‐free 1 with N‐free 1 . The robustness of these Pd‐bound norvalines was adequately demonstrated by the preservation of the optical purity and Pd unit during the synthetic transformations. The lipophilic Pd‐bound norvalines L ‐ 2 , Boc‐L ‐[PdCl(dpb)]Nva‐NH‐n‐C11H23, and L ‐ 4 , n‐C4H9CO‐L ‐[PdCl(dpb)]Nva‐NH‐n‐C11H23, self‐assembled in aromatic solvents to afford supramolecular gels. The assembled structures in a thermodynamically stable single crystal of L ‐ 2 and kinetically stable supramolecular aggregates of L ‐ 2 were precisely elucidated by cryo‐TEM, WAX, SAXS, UV/Vis, IR analyses, and single‐crystal X‐ray crystallography. An antiparallel β‐sheet‐type aggregate consisting of an infinite one‐dimensional hydrogen‐bonding network of amide groups and π‐stacking of PdCl(dpb) moieties was observed in the supramolecular gel fiber of L ‐ 2 , even though discrete dimers are assembled through hydrogen bonding in the thermodynamically stable single crystal of L ‐ 2 . The disparate DSC profiles of the single crystal and xerogel of L ‐ 2 indicate different thermodynamics of the molecular assembly process.  相似文献   

9.
Triblock and multiblock copolymers of methyl acrylate containing short blocks of the hydrogen bonding monomer N‐acryloyl‐l ‐phenylalanine were prepared via reversible addition–fragmentation chain transfer polymerization in two steps using a bifunctional trithiocarbonate for the triblock copolymer and a polyfunctional trithiocarbonate for the multiblock copolymer. The polymer materials were investigated via tensile testing showing that the hydrogen bonding monomer induces a pronounced increase in toughness. The toughness of the material is further enhanced when going from triblock to multiblock topology. Both types of copolymer display a very strong healing effect, with the samples' toughness (which is increased by drawing) becoming even larger after breaking and healing. Already, a very small content of only 0.1 mol % of N‐acryloyl‐l ‐phenylalanine improves the mechanical properties of these thermoplastic elastomers significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2809–2819  相似文献   

10.
Radical polymerization of N,N‐dimethylacrylamide (DMAAm) was investigated in the presence of tartrates, such as diethyl L ‐tartrate, diisopropyl L ‐tartrate, and di‐n‐butyl L ‐tartrate, in toluene at low temperatures. Syndiotactic polymers were obtained in the presence of tartrates, whereas isotactic polymers were obtained in the absence of tartrates. The syndiotactic‐specificity increased with increasing amount of tartrates and with decreasing polymerization temperature. NMR analysis suggested that DMAAm and tartrates formed a 1:1 complex through double hydrogen bonding. A mechanism for the syndiotactic‐specific radical polymerization of DMAAm is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1192–1203, 2009  相似文献   

11.
Four new saponins, yemuosides YM17–YM20 ( 1 – 4 , resp.), were isolated from the rattan of Stauntonia chinensis DC. (Lardizabalaceae) along with a known saponin, nipponoside D ( 5 ). Their structures were elucidated by spectroscopic analysis and chemical evidence as 20,30‐dihydroxy‐29‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), 20,29‐dihydroxy‐30‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), 29‐hydroxy‐30‐norolean‐20(21)‐enolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 3 ), 29‐hydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ), and 23,29‐dihydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 5 ). Yemuoside YM17–YM19 ( 1 – 3 , resp.) contain novel unusual nortriterpene aglycones.  相似文献   

12.
Single‐strand oligo‐DNA‐modified Au nanoparticles (AuNPs) undergo aggregation in the presence of poly(L ‐lysine) (PLL), which is attributed to the interactions between the oligo‐DNA and PLL. These interactions between the oligo‐DNA and PLL were identified to be electrostatic when the lysine residues of PLL were positively charged and to be hydrogen bonding when the residues were deprotonated. The aggregation was promoted with an increase in the pH value at a pH level lower than the pKa value of PLL (pKa≈10.0) due to the gradual deprotonation of the lysine residues and thus suppressed electrostatic interactions between the positively charged lysine residues of PLL and the negatively charged backbone phosphate groups of the oligo‐DNA. At pH levels higher than the pKa value of PLL, the aggregation was identified to be dominated by the hydrogen bonds between the bases of the oligo‐DNA and the deprotonated lysine residues of PLL. This study prompts the possibility that the spectral, and thus color, change of AuNPs upon aggregation can be used as a probe to follow the interactions between oligo‐DNA and polypeptides.  相似文献   

13.
A novel optically active phenylacetylene derivative, N‐(tert‐butoxycarbonyl)‐4‐ethynyl‐L ‐phenylalanine methyl ester ( 1 ), was synthesized from L ‐tyrosine and polymerized with a rhodium catalyst. The corresponding polymer [poly( 1 )] with a moderate molecular weight was obtained in a high yield. The alkaline hydrolysis of poly( 1 ) gave poly[N‐(tert‐butoxycarbonyl)‐4‐ethynyl‐L ‐phenylalanine] [poly( 2 )] carrying free carboxy groups. Polarimetric, CD, and UV–vis spectroscopy analyses revealed that poly( 1 ) took a predominantly one‐handed helical structure in MeOH and toluene, and poly( 2 ) took a helical structure in MeOH. The secondary structures of poly( 1 ) and poly( 2 ) could be tuned with heat and solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1691–1698, 2007  相似文献   

14.
The thermosensitivity of biodegradable and non‐toxic amphiphilic polymer derived from a naturally occurring polypeptide and a derivative of amino acid was first reported. The amphiphilic polymer consisted of poly(γ‐glutamic acid) (γ‐PGA) as a hydrophilic backbone, and L ‐phenylalanine ethyl ester (L ‐PAE) as a hydrophobic branch. Poly(γ‐glutamic acid)‐graft‐L ‐phenylalanine (γ‐PGA‐graft‐L ‐PAE) with grafting degrees of 7–49% were prepared by varying the content of a water‐soluble carbodiimide (WSC). γ‐PGA‐graft‐L ‐PAE with a grafting degree of 49% exhibited thermoresponsive phase transition behavior in an aqueous solution at around 80°C. The copolymers with grafting degrees in the range of 30–49% showed thermoresponsive properties in NaCl solution. A clouding temperature (Tcloud) could be adjusted by changing the polymer concentration and/or NaCl concentration. The thermoresponsive behavior was reversible. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two‐dimensional films and three‐dimensional aggregates derived from N‐stearoyl‐L ‐alanine and N‐lauroyl‐L ‐alanine, respectively. The assemblies of N‐stearoyl‐L ‐alanine afforded stable films at the air–water interface. More compact assemblies were formed upon incorporation of AuNPs in the air–water interface of N‐stearoyl‐L ‐alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three‐dimensional assemblies of N‐lauroyl‐L ‐alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long‐range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze‐dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel–nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular‐level properties by means of manipulation of the information inscribed on the NP surface.  相似文献   

16.
Methyl β‐d ‐galactopyranosyl‐(1→4)‐α‐d ‐mannopyranoside methanol 0.375‐solvate, C13H24O11·0.375CH3OH, (I), was crystallized from a methanol–ethanol solvent system in a glycosidic linkage conformation, with ϕ′ (O5Gal—C1Gal—O1Gal—C4Man) = −68.2 (3)° and ψ′ (C1Gal—O1Gal—C4Man—C5Man) = −123.9 (2)°, where the ring is defined by atoms O5/C1–C5 (monosaccharide numbering); C1 denotes the anomeric C atom and C6 the exocyclic hydroxymethyl C atom in the βGalp and αManp residues, respectively. The linkage conformation in (I) differs from that in crystalline methyl α‐lactoside [methyl β‐d ‐galactopyranosyl‐(1→4)‐α‐d ‐glucopyranoside], (II) [Pan, Noll & Serianni (2005). Acta Cryst. C 61 , o674–o677], where ϕ′ is −93.6° and ψ′ is −144.8°. An intermolecular hydrogen bond exists between O3Man and O5Gal in (I), similar to that between O3Glc and O5Gal in (II). The structures of (I) and (II) are also compared with those of their constituent residues, viz. methyl α‐d ‐mannopyranoside, methyl α‐d ‐glucopyranoside and methyl β‐d ‐galactopyranoside, revealing significant differences in the Cremer–Pople puckering parameters, exocyclic hydroxymethyl group conformations and intermolecular hydrogen‐bonding patterns.  相似文献   

17.
A series of aregic poly(ester amide)s (a‐PEAT6) with ester/amide ratios (a : b) varying from 1 : 19 to 1 : 2 were prepared with L ‐tartaric acid, 6‐aminohexanol, and 1,6 hexanediamine as the starting materials. Polycondensation in a solution of the diamine with mixtures of pentachlorophenyl‐activated di‐O‐methyl‐L ‐tartaric and 6‐aminohexyl‐di‐O‐methyl‐L ‐tartaric acids led to a‐PEAT6(a : b), with the a : b ratio determined by the composition of the feed. The newly synthesized poly(ester amide)s were characterized by elemental analysis, size exclusion chromatography, and IR and NMR spectroscopy. They had number‐average molecular weights between 25,000 and 45,000 and were highly crystalline, showing melting temperatures ranging from 100 to 230 °C and glass‐transition temperatures oscillating between 50 and 100 °C. The thermal degradation of a‐PEAT6(a : b) began above 200 °C and concluded with a final weight loss between 60 and 90% of the initial mass. The process evolved with the formation of cyclic tartarimide units and extensive main‐chain scissions. The degradation mechanism is discussed in relation to the chemical composition and microstructure of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2687–2696, 2000  相似文献   

18.
A strategy to create cooperative hydrogen‐bonding centers by using strong and directional intramolecular hydrogen‐bonding motifs that can survive in aqueous media is presented. In particular, glyco–oligoamides, a family of DNA minor groove binders, with cooperative and non‐cooperative hydrogen‐bonding donor centers in the carbohydrate residues have been designed, synthesized, and studied by means of NMR spectroscopy and molecular modeling methods. Indeed, two different sugar moieties, namely, β‐D ‐Man‐Py‐γ‐Py‐Ind ( 1 ; Ind=indole, Man=mannose, Py=pyrrole) and β‐D ‐Tal‐Py‐γ‐Py‐Ind ( 2 ; Tal=talose), were chosen according to our design. These sugar molecules should present one‐ or two‐directional intramolecular hydrogen bonds. The challenge has been to study the conformation of the glyco–oligoamides at low temperature in physiological media by detecting the exchangeable protons (amide NH and OH resonances) by means of NMR spectroscopic analysis. In addition, two more glyco–oligoamides with non‐cooperative hydrogen‐bonding centers, that is, β‐D ‐Glc‐Py‐γ‐Py‐Ind ( 3 ; Glc=glucose), β‐D ‐Gal‐Py‐γ‐Py‐Ind ( 4 ; Gal=galactose), and the model compounds β‐D ‐Man‐Py‐NHAc ( 5 ) and β‐D ‐Tal‐Py‐NHAc ( 6 ) were synthesized and studied for comparison. We have demonstrated the existence of directional intramolecular hydrogen bonds in 1 and 2 in aqueous media. The unexpected differences in terms of stabilization of the intramolecular hydrogen bonds in 1 and 2 relative to 5 and 6 promoted us to evaluate the influence of CH—π interactions on the establishment of intramolecular hydrogen bonds by using computational methods. Initial binding studies of 1 and 2 with calf‐thymus DNA and poly(dA‐dT)2 by NMR spectroscopic analysis and molecular dynamics simulations were also carried out. Both new sugar–oligoamides are bound in the minor groove of DNA, thus keeping a stable hairpin structure, as in the free state, in which both intramolecular hydrogen‐bonding and CH—π interactions are present.  相似文献   

19.
Two new iridoid glycosides, teneoside A (=(2aR,5S)‐5‐[(β‐D ‐glucopyranosyl)oxy]‐2a,4a,5,7b‐tetrahydro‐4‐{[(α‐L ‐rhamnopyranosyl)oxy]methyl}‐1H‐2,6‐dioxacyclopenta[cd]inden‐1‐one; 1 ) and teneoside B (=methyl (1S,5R)‐1‐[(β‐D ‐glucopyranosyl)oxy]‐1,4a,5,7a‐tetrahydro‐5‐hydroxy‐7‐{[(α‐L ‐rhamnopyranosyl)oxy]methyl}cyclopenta[c]pyran‐4‐carboxylate; 2 ), were isolated from the roots of Hedyotis tenelliflora Blume , along with two known compounds, deacetylasperuloside ( 3 ) and scandoside methyl ester ( 4 ). Their structures were elucidated by chemical methods (acid hydrolysis) and spectroscopic analyses.  相似文献   

20.
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L ‐lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen‐bonded N? H stretching band. The interconversion between the “free” and hydrogen‐bonded N? H and C?O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C?O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 °C/min or higher, the crystallization of the PLLA soft segments was prohibited. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 685–695, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号