首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reactive oxygen species (ROS) forming enzymes are of significant interest as anticancer agents due to their potent cytotoxicity. A key challenge in their clinical translation is attaining site‐specific delivery and minimizing biodistribution to healthy tissues. Here, complexes composed of the ROS enzyme glucose oxidase (GOX), poly‐l ‐lysine‐grafted‐polyethylene glycol (PLL‐g‐PEG), and anti‐prostate specific membrane antigen (anti‐PSMA) monoclonal antibody are synthesized for localized delivery and uptake in prostate cancer cells. Formation of anti‐PSMA‐PLL‐g‐PEG/GOX results in nanoscale complexes ≈30 nm in diameter with a ζ‐potential of 6 mV. The anti‐PSMA‐PLL‐g‐PEG/GOX complexes show significant cytotoxicity (≈60% reduction in cell viability) against PSMA‐expressing LNCaP cells compared to unmodified GOX. Importantly, cytotoxicity in LNCaP cells occurrs concurrently with anti‐PSMA‐PLL‐g‐PEG/GOX uptake and increases in intracellular generation of ROS. These results demonstrate that cytotoxicity of ROS inducing enzymes can be enhanced by intracellular delivery compared to equivalent concentrations of free enzyme, providing a novel means for cancer therapy.  相似文献   

2.
Gambogic acid (GA, 1 ), the most prominent representative of Garcinia natural products, has been reported to be a promising anti‐tumor agent. In order to further explore the structure‐activity relationship of GA and discover novel GA derivatives as anti‐tumor agents, 17 novel C‐37 modified derivatives of GA were synthesized and evaluated for their in vitro anti‐tumor activities against A549, HCT‐116, BGC‐823, HepG2 and MCF‐7 cancer cell lines. Among them, 11 compounds were found to be more potent than GA against some cancer cell lines. Notably, compound 8 was almost 5–10 folds more active than GA against A549 and BGC‐823 cell lines with the IC50 values of 0.12 µmol·L?1 and 0.57 µmol·L?1, respectively. Chemical modification at C‐37 position of GA by introducing of hydrophilic amines could lead to increased activity and improved drug‐like properties. These findings will enhance our understanding of the structure‐activity relationship (SAR) of GA and lead to the discovery of novel GA derivatives as potential anti‐tumor agents.  相似文献   

3.
Lantibiotics are a type of ribosomally synthesized and post‐translationally modified peptides (termed lanthipeptides) with often potent antimicrobial activity. Herein, we report the discovery of a new lantibiotic, lexapeptide, using the library expression analysis system (LEXAS) approach. Lexapeptide has rare structural modifications, including N‐terminal (N,N)‐dimethyl phenylalanine, C‐terminal (2‐aminovinyl)‐3‐methyl‐cysteine, and d ‐Ala. The characteristic lanthionine moiety in lexapeptide is formed by three proteins (LxmK, LxmX, and LxmY), which are distinct from enzymes known to be involved in lanthipeptide biosynthesis. Furthermore, a novel F420H2‐dependent reductase (LxmJ) from the lexapeptide biosynthetic gene cluster (BGC) is identified to catalyze the reduction of dehydroalanine to install d ‐Ala. Our findings suggest that lexapeptide is the founding member of a new class of lanthipeptides that we designate as class V. We also identified further class V lanthipeptide BGCs in actinomycetes and cyanobacteria genomes, implying that other class V lantibiotics await discovery.  相似文献   

4.
Acute myeloid leukemia (AML), which is the most common acute adult leukemia and the second most common pediatric leukemia, still has a poor prognosis. Human C‐type lectin‐like molecule‐1 (CLL1) is a recently identified myeloid lineage restricted cell surface marker, which is overexpressed in over 90 % of AML patient myeloid blasts and in leukemic stem cells. Here, we describe the synthesis of a novel bispecific antibody, αCLL1‐αCD3, using the genetically encoded unnatural amino acid, p‐acetylphenylalanine. The resulting αCLL1‐αCD3 recruits cytotoxic T cells to CLL1 positive cells, and demonstrates potent and selective cytotoxicity against several human AML cell lines and primary AML patient derived cells in vitro. Moreover, αCLL1‐αCD3 treatment completely eliminates established tumors in an U937 AML cell line xenograft model. These results validate the clinical potential of CLL1 as an AML‐specific antigen for the generation of a novel immunotherapeutic for AML.  相似文献   

5.
Several syntheses have already been reported for cis‐trikentrins and herbindoles, which are indole alkaloids unsubstituted at the C2 and C3 positions that bear a trans‐1,3‐dimethylcyclopentyl unit. Herein, we describe the first asymmetric and stereoselective synthesis of the more challenging trans‐trikentrin A as its naturally occurring isomer. Different approaches were investigated and the strategy of choice was a combination of an enzymatic kinetic resolution and a thallium(III)‐mediated ring contraction. The antiproliferative activities of the natural product and related intermediates have been tested against human tumor cell lines, leading to the discovery of new compounds with potent antitumor activity.  相似文献   

6.
Thioviridamide is a structurally unique compound with potent antitumor activity. The biosynthesis of thioviridamide follows a typical pathway as ribosomally synthesized and post‐translationally modified peptides, making the genome mining‐based discovery of thioviridamide‐like compounds rational. Taking advantage of the linkage between the precursor peptide and the metabolite skeleton, we identified a new biosynthetic gene cluster in Streptomyces sp. NRRL S‐87 that could encode thioviridamide analogues. Overexpression of the whole gene cluster led to the isolation and structure elucidation of TVA‐YJ‐4 and TVA‐YJ‐5, two novel thioviridamide‐like compounds featuring N‐terminal capping groups. Chemical screening of the fermentation extracts also detected TVA‐YJ‐6, another new thioviridamide‐like compound with representative methionine sulfoxide. Detailed analysis further revealed that these structural modifications were introduced during the compound extraction process instead of through genuine enzymatic reactions. TVA‐YJ‐4 and TVA‐YJ‐5 display slightly reduced cytotoxic activities against a panel of tumor cell lines in comparison with their parental natural product, TVA‐YJ‐2. Our work will expand the membership of this rare class of compounds and promote related biosynthetic studies.  相似文献   

7.
The stereocontrolled total synthesis of the originally proposed ( 1 ) and correct ( 2 ) structures of (+)‐neopeltolide, a novel marine macrolide natural product with highly potent antiproliferative activity against several cancer cell lines as well as potent antifungal activity, has been achieved by exploiting a newly developed Suzuki–Miyaura coupling/ring‐closing metathesis strategy. Alkylborate 44 , which was generated in situ from iodide 34 , was coupled with enol phosphate 8 by a Suzuki–Miyaura coupling. Ring‐closing metathesis of the derived diene 45 followed by stereoselective hydrogenation afforded tetrahydropyran 47 as a single stereoisomer in high overall yield from 34 . Our convergent strategy enabled us to construct the 14‐membered macrolactone core structure of 2 in a rapid and efficient manner. Total synthesis and biological evaluation of synthetic intermediates and designed synthetic analogues, performed to establish the structure–activity relationships of 2 , led to the discovery of a structurally simple yet potent cytotoxic analogue, 9‐demethylneopeltolide ( 54 ).  相似文献   

8.
Naturally occurring muraymycin nucleoside antibiotics represent a promising class of novel antibacterial agents. The structural complexity suggests the investigation of simplified analogues as potential lead structures, which can then be further optimized towards highly potent antimicrobials. Herein we report studies on muraymycin‐derived potential lead structures lacking an aminoribose motif found in most naturally occurring muraymycins. We have identified a 5′‐defunctionalized motif to be ideal in terms of stability and chemical accessibility and have synthesized a full‐length muraymycin analogue based on this structure using a novel fully stereocontrolled route. The obtained 5′‐deoxy analogue of the natural product muraymycin C4 showed good inhibitory properties towards the bacterial target protein MraY, sufficient pharmacokinetic stability and no cytotoxicity against human cells, thus making it a promising lead for antibacterial drug development.  相似文献   

9.
The current study in this article concerned with construction of five‐membered heterocycles with multiple heteroatoms as nitrogen and sulfur from readily available starting materials and reagents. Treatment of 1‐(2‐oxo‐2H‐chromene‐3‐carbonyl)‐3‐phenyl‐1H‐pyrazol‐5(4H)‐one with each of phenylisothiocyanate in alcoholic potassium hydroxide and carbon disulfide in basic medium gave rise to a thioanilide and methylthio derivatives, respectively. Treatment of the latter compounds with a variety of hydrazonoyl halides resulted in construction of thiadiazole moiety linked to pyrazole ring. Furthermore, triazole derivatives were synthesized from the thioanilide derivative through its reaction with methyl iodide followed by reaction with hydrazonoyl halides. 5α‐Reductase inhibition activity for the prepared compounds was investigated against the reference drug anastrozole, and the results showed that the inhibition activity of compounds 5g and 11g is more potent than anastrozole. Also compounds bearing triazole moiety is more potent than compounds bearing thiadiazole one. Moreover, the anti‐prostate cancer screening anti‐androgenic bioassay in human prostate cancer cells for the tested compounds was evaluated, and the results showed great inhibition growth and potential antiandrogens.  相似文献   

10.
C4 variation of 4′-O-demethyl-epipodophyllotoxin (DMEP) is an effective approach to optimize the antitumor spectra of this compound class. Accordingly, two series of novel DMEP derivatives were synthesized, and as expected, the antitumor spectra of these derivatives varied with different C4 substituents. Notably, most compounds showed significant inhibition against the etoposide (2)-resistant KBvin cells. Four of the compounds (11, 18, 27 and 28) induced protein-linked DNA break (PLDB) levels higher than those of GL-331 (6) and 2, and are assumed to be topoisomerase II (topo II) poisons more potent than 6 and 2. Compound 28, a potent topo II poison highly effective against KBvin cells, was further evaluated with a panel of tumor cells and was most active against HepG2. This compound also exhibited apparent in vivo antitumor efficacy in hepatoma 22 (H22) mouse model. The results indicated that C4 derivation of DMEP is a feasible approach to identify potent topo II inhibitors with optimized antitumor profiles.  相似文献   

11.
A series of new 1,3,4‐oxadiazole‐linked 1,2,3‐triazole/isoxazole derivatives were designed and synthesized. All the synthesized compounds were screened for in vitro anticancer activity against four human cancer cells: HeLa (cervical), MDA‐MB‐231 (breast), DU‐145 (prostate), and HEPG2 (liver). Among 17 compounds tested, 7a , 7c , and 7d showed potent activity toward four cell lines.  相似文献   

12.
Photoinduced single electron transfer cyclization processes for synthesis of a series of 3‐hydroxy isoindolinone cyclotripeptides containing double pharmacophores (cyclotripeptides and phthalimide moiety) are described to develop novel antitumor cyclopeptide drugs. The results showed that our proposed method could be used to synthesize various isoindolinone cyclotripeptides highly regioselectively at a moderate rate. Moreover, the inhibitory potency toward human cervical carcinoma HeLa cells of the target cyclopeptides and the linear tripeptide precursors were evaluated, and most of the compounds were observed with potent inhibition ability against tumor growth. Specifically, compound 6c was found to inhibit HeLa cells with an IC50 value of 32 μM, which may serve as a potential candidate for drug development. In addition, 3‐hydroxy isoindolinone‐cyclo‐Gly‐Ala‐Pro ( 6a 1 ) was chosen from the obtained cyclopeptides for the absolute configuration research, and an S configuration of C‐3 was established by experimental electronic circular dichroism with the aid of theoretical calculations.  相似文献   

13.
The catalytic promiscuity of the novel benzophenone C‐glycosyltransferase, MiCGT, which is involved in the biosynthesis of mangiferin from Mangifera indica, was explored. MiCGT exhibited a robust capability to regio‐ and stereospecific C‐glycosylation of 35 structurally diverse druglike scaffolds and simple phenolics with UDP‐glucose, and also formed O‐ and N‐glycosides. Moreover, MiCGT was able to generate C‐xylosides with UDP‐xylose. The OGT‐reversibility of MiCGT was also exploited to generate C‐glucosides with simple sugar donor. Three aryl‐C‐glycosides exhibited potent SGLT2 inhibitory activities with IC50 values of 2.6×, 7.6×, and 7.6×10−7 M , respectively. These findings demonstrate for the first time the significant potential of an enzymatic approach to diversification through C‐glycosidation of bioactive natural and unnatural products in drug discovery.  相似文献   

14.
The identification of agents with antiproliferative activity against endothelial cells has significant value for the treatment of many angiogenesis‐dependent pathologies. The vascular endothelial growth factor (VEGF) and its receptors have been implicated as key factors in tumor angiogenesis and are major targets in cancer therapy. A series of novel 6,7‐dimethoxy‐quinazolin‐4‐yl‐amino‐thiophene‐2‐carboxamides were synthesized and evaluated as antagonists of VEGFR‐1 and VEGFR‐2. More specifically, several analogues exhibited low micromolar to nanomolar potency in the inhibition of VEGFR‐1 and VEGFR‐2. The most potent compound in this series, compound 7b , was found to be a potent inhibitor of VEGFR‐2 in a homogeneous time‐resolved fluorescence enzymatic assay with an IC50 as low as 87 nm.  相似文献   

15.
Arylnaphthalene lignans have attracted considerable interest with the discovery of their antineoplastic activities. Two such compounds are justicidin B and 6′‐hydroxy justicidin C, both of which have been isolated from the herb Justicia procumbens . We sought to develop and validate a sensitive and accurate, ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry method for the structural determination and pharmacokinetics of justicidin B and 6′‐hydroxy justicidin C. Chromatographic separation was achieved on an Agilent 300SB‐C18 column using water (0.5% formic acid, 10 mM NH4COOH) methanol as the mobile phase. The plasma samples obtained after oral administration of the active extract of Justicia procumbens were successfully analyzed with our novel method, thereby demonstrating its sound applicability and reliability. The lower limit of quantification for justicidin B and 6′‐hydroxy justicidin C was 0.50 and 1.00 ng/mL in 50 μL rat plasma, respectively. The elimination half‐life and clearance of justicidin B was estimated to be 1.27 ± 0.61 h and 5.40 ± 0.22 L/h/kg while that of 6′‐hydroxy justicidin C was 2.07 ± 0.70 h and 11.84 ± 1.06 L/h/kg. This newly developed and validated method was successfully applied to the quantification and pharmacokinetic study of justicidin B and 6′‐hydroxy justicidin C in rats.  相似文献   

16.
Current therapies for common types of cancer such as renal cell cancer are often ineffective and unspecific, and novel pharmacological targets and approaches are in high demand. Here we show the unexpected possibility for the rapid and selective killing of renal cancer cells through activation of calcium‐permeable nonselective transient receptor potential canonical (TRPC) calcium channels by the sesquiterpene (?)‐englerin A. This compound was found to be a highly efficient, fast‐acting, potent, selective, and direct stimulator of TRPC4 and TRPC5 channels. TRPC4/5 activation through a high‐affinity extracellular (?)‐englerin A binding site may open up novel opportunities for drug discovery aimed at renal cancer.  相似文献   

17.
The present study a series of (E)‐5‐methoxy‐2‐styryl‐4H‐pyran‐4‐ones 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j was synthesized and evaluated for growth inhibitory inhibition against carcinoma cells. The growth inhibition study of eight carcinoma cell lines was examined and demonstrated that SKHep cells exhibit significant structure‐activity relationship in response to the tested compounds. Among them, 6f showed the most potent activity against SKHep, A549, AGS, and H460 cell lines with GI50 values of 0.17, 8.3, 3.6, 8.0 μM, respectively.  相似文献   

18.
The novel 1,4‐diphenethyl‐1,2,3,4‐tetrahydro‐7‐methoxyquinoxalin‐6‐carbaldehyde was synthesized by reductive alkylation of 6‐methoxy quinoxaline with phenyl acetic acid and was further subjected to Knoevenagel condensation with various active methylene compounds to synthesize novel styryl colorants. Photophysical properties of styryl colorants were studied using UV–visible and fluorescence spectroscopy. These colorants displayed orange to violet hue and showed fluorescence emission maxima in the region of 560–640 nm, and displayed a large Stokes shift (85–104 nm). Compounds were subjected to thermogravimetric analysis which showed excellent stability up to 310°C. These styryl compounds were evaluated for their antimicrobial study as antifungal against Candida albicans C. albicans and Aspergillus niger and antibacterial against Escherichia coli and Staphylococcus aureus. The results revealed good antimicrobial activity against tested organisms. The synthesized chromophores were characterized using elemental analysis, FTIR, 13C‐NMR and 1H‐NMR spectroscopy and mass spectrometry.  相似文献   

19.
20.
AXL has been defined as a novel target for cancer therapeutics. However, only a few potent and selective inhibitors targeting AXL are available to date. Recently, our group has developed a lead compound, 9im, capable of displaying potent and specific inhibition of AXL. To further identify the cellular on/off targets, in this study, competitive affinity‐based proteome profiling was carried out, leading to the discovery of several unknown cellular targets such as BCAP31, LPCAT3, POR, TM9SF3, SCCPDH and CANX. In addition, trans‐cyclooctene (TCO) and acedan‐containing probes were developed to image the binding between 9im and its target proteins inside live cells and tumor tissues. These probes would be useful tools in the detection of AXL in various biosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号