首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Late‐stage synthesis of α,β‐unsaturated aryl ketones remains an unmet challenge in organic synthesis. Reported herein is a photocatalytic non‐chain‐radical aroyl chlorination of alkenes by a 1,3‐chlorine atom shift to form β‐chloroketones as masked enones that liberate the desired enones upon workup. This strategy suppresses side reactions of the enone products. The reaction tolerates a wide array of functional groups and complex molecules including derivatives of peptides, sugars, natural products, nucleosides, and marketed drugs. Notably, addition of 2,6‐di‐tert‐butyl‐4‐methyl‐pyridine enhances the quantum yield and efficiency of the cross‐coupling reaction. Experimental and computational studies suggest a mechanism involving PCET, formation and reaction of an α‐chloro‐α‐hydroxy benzyl radical, and 1,3‐chlorine atom shift.  相似文献   

2.
The Meerwein arylation has recently become an even more powerful tool for the functionalization of alkenes. Besides the attachment of an aryl group, radical reactions of this type allow the introduction of several different heteroatoms and a broad variety of alkenes are meanwhile tolerated as substrates. Closing a long‐standing gap of the methodology, this communication describes the first intermolecular Meerwein‐type carbofluorination. In metal‐free reactions, arylalkyl fluorides were obtained from arylhydrazines and alkenes with Selectfluor acting as oxidant and as radical fluorine source.  相似文献   

3.
A copper‐catalyzed alkylation of allylic alcohols by alkyl nitriles with concomitant 1,2‐aryl migration was developed. Formation of the alkyl nitrile radical was followed by its intermolecular addition to alkenes and the migration of a vicinal aryl group with the concomitant generation of a carbonyl functionality to complete the domino sequence. Mechanistic studies suggested that 1,2‐aryl migration proceeded through a radical pathway (neophyl rearrangement). The protocol provided an efficient route to functionalized ketones containing an α‐quaternary center.  相似文献   

4.
A novel method for selective generation of aryl radicals from diaryliodonium salts and iodanylidene malonates with sodium 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPONa) as a single‐electron transfer (SET) reducing reagent is described. In the presence of various alkenes, aryl radicals formed after SET‐reduction of hypervalent iodine compounds undergo alkene addition and the adduct radicals that are thus generated are efficiently trapped by the concomitantly generated TEMPO radical to eventually afford oxyarylated products in moderate to very good yields. The efficiency of aryl radical generation of various iodine(III) reagents is studied and the generation of an iodanylidene malonate aryl radical is also investigated by computational methods.  相似文献   

5.
An oxidative trifunctionalization of aryl alkynoates has been devised via the chalcogenide radical triggered intramolecular 1,4‐aryl migration/decarboxylation cascade to prepare 1,1‐dichalcogenide tetrasubstituted alkenes in high yields (up to 98 %). This operationally simple reaction proceeds under metal‐free conditions, can be executed on gram scale, and highlights formal 1,1‐difunctionalization of alkynes. Synthetic potential of this protocol was demonstrated through a twofold cascade rearrangement to access highly conjugated tetra‐selenylated alkenes along with a cross‐dehydrogenative annulation to prepare fluorene derivative.  相似文献   

6.
Reaction between nitrogen‐centered radicals and unsaturated C?C bonds is an effective synthetic strategy for the construction of nitrogen‐containing molecules. Although the reactions between nitrogen‐centered radicals and alkenes have been studied extensively, their counterpart reactions with alkynes are extremely rare. Herein, the first example of reactions between azidyl radicals and alkynes is described. This reaction initiated an efficient cascade reaction involving inter‐/intramolecular radical homolytic addition toward a C?C triple bond and a hydrogen‐atom transfer step to offer a straightforward approach to NH‐1,2,3‐triazoles under mild reaction conditions. Both the internal and terminal alkynes work well for this transformation and some heterocyclic substituents on alkynes are compatible. This mechanistically distinct strategy overcomes the inherent limitations associated with azide anion chemistry and represents a rare example of reactions between a nitrogen‐centered radicals and alkynes.  相似文献   

7.
Fifteen second-generation NHC-ligated boranes with aryl and alkyl substituents on boron were prepared, and their radical chemistry was explored by electron paramagnetic resonance (EPR) spectroscopy and calculations. Hydrogen atom abstraction from NHC-BH(2)Ar groups produced boryl radicals akin to diphenylmethyl with spin extensively delocalized across the NHC, BH, and aryl units. All of the NHC-B·HAr radicals studied abstracted Br-atoms from alkyl bromides. Radicals with bulky N,N'-dipp substituents underwent dimerization about 2 orders of magnitude more slowly than first-generation NHC-ligated trihydroborates. The evidence favored head-to-head coupling yielding ligated diboranes. The first ligated diboranyl radical, with a structure intermediate between that of ligated diboranes and diborenes, was spectroscopically characterized during photolysis of di-t-butyl peroxide with N,N'-di-t-butyl-imidazol-2-ylidene phenylborane. The reactive site of B-alkyl-substituted NHC-boranes switched from the boron center to the alkyl substituent for both linear and branched alkyl groups. The β-borylalkyl radicals obtained from N,N'-dipp-substituted boranes underwent exothermic β-scissions with production of dipp-Imd-BH(2)· radicals and alkenes. The reverse additions of NHC-boryl radicals to alkenes are probably endothermic for alkyl-substituted alkenes, but exothermic for conjugated alkenes (addition of an NHC-boryl radical to 1,1-diphenylethene was observed). A cyclopropylboryl radical was observed, but, unlike other α-cyclopropyl-substituted radicals, this showed no propensity for ring-opening.  相似文献   

8.
Abundant peaks in the mass spectra of thioanilides involve loss of a substituted thiophenoxy radical by a process involving aryl migration from nitrogen to sulfur (a four-centre skeletal rearrangement). The effects of substituents on this process have been studied. Substituents in the amide ring, in the acid part of the molecule and on the nitrogen atom were studied. Four-centre aryl migrations seem to be favoured if the aryl group migrates from one atom to either a more polarizable or a more electronegative atom, and in the case of thioanilides this migration is more important in tertiary compounds than in secondary compounds.  相似文献   

9.
Upon treatment with aryldiazonium salts, prenyl carbamates and ureas undergo redox‐neutral azocycloamination. In general, N‐aryl O‐prenyl carbamates cyclize in a photocatalytic reaction with visible light and an organic dye. With electron‐deficient diazonium salts, electronic matching with an electron‐rich N‐aryl substituent results in a reaction proceeding in the ground state, without either light or photocatalyst. Cyclic voltammetry suggests that this radical reaction is initiated by hydrogen‐atom abstraction mediated by an aryl radical, followed by a radical addition cascade and proton‐coupled hole propagation. The reaction proceeds at room temperature in short reaction times, and a range of functional groups is tolerated.  相似文献   

10.
An operationally simple method to affect an atom‐transfer radical addition of commercially available ICH2Bpin to terminal alkenes has been developed. The intermediate iodide can be transformed in a one‐pot process into the corresponding cyclopropane upon treatment with a fluoride source. This method is highly selective for the cyclopropanation of unactivated terminal alkenes over non‐terminal alkenes and electron‐deficient alkenes. Due to the mildness of the procedure, a wide range of functional groups such as esters, amides, alcohols, ketones, and vinylic cyclopropanes are well tolerated.  相似文献   

11.
A new procedure has been proposed for the synthesis of aryl β-bromoalkyl sulfones by radical addition of arenesulfonyl chlorides at the double bond of alkenes in the presence of copper(I) halides, sodium bromide, and phase-transfer catalyst. The key stage of the process is bromide ion insertion into intermediate copper(II) derivative formed in the initiation stage. The subsequent bromine atom transfer from copper to alkyl radical yields the addition product.  相似文献   

12.
Radical borylation using N‐heterocyclic carbene (NHC)‐BH3 complexes as boryl radical precursors has emerged as an important synthetic tool for organoboron assembly. However, the majority of reported methods are limited to reaction modes involving carbo‐ and/or hydroboration of specific alkenes and alkynes. Moreover, the generation of NHC‐boryl radicals relies principally on hydrogen atom abstraction with the aid of radical initiators. A distinct radical generation method is reported, as well as the reaction pathways of NHC‐boryl radicals enabled by photoredox catalysis. NHC‐boryl radicals are generated via a single‐electron oxidation and subsequently undergo cross‐coupling with the in‐situ‐generated radical anions to yield gem‐difluoroallylboronates. A photoredox‐catalyzed radical arylboration reaction of alkenes was achieved using cyanoarenes as arylating components from which elaborated organoborons were accessed. Mechanistic studies verified the oxidative formation of NHC‐boryl radicals through a single‐electron‐transfer pathway.  相似文献   

13.
The unexpected formation of 3‐aryl‐5‐arylamino‐1,2,4‐oxadiazoles took place, when arylamidoximes reacted thermally with ethoxycarbonylmethylene(triphenyl)phosphorane. Furoxans, nitriles, ureas were also isolated suggesting aryl cyanide oxides as intermediates. 3‐Aryl‐5‐arylamino‐1,2,4‐oxadiazoles were formed via an aryl migration from the carbon atom to the nitrogen atom of the amidoxime, and the structure was further proved from the X‐ray crystal structure of the N‐(4‐bromobenzoyl) derivative.  相似文献   

14.
Sulfonyl chlorides are inexpensive reactants extensively explored for functionalization, but never considered for radical hydrosulfonylation of alkenes. Herein, we report that tris(trimethylsilyl)silane is an ideal hydrogen atom donor enabling highly effective photoredox‐catalyzed hydrosulfonylation of electron‐deficient alkenes with sulfonyl chlorides. To increase the generality of this transformation, polarity‐reversal catalysis (PRC) was successfully implemented for alkenes bearing alkyl substituents. This late‐stage functionalization method tolerates a remarkably wide range of functional groups, is operationally simple, scalable, and allows access to building blocks which are important for medicinal chemistry and drug discovery.  相似文献   

15.
Defluorinative C(sp3)?P bond formation of α‐trifluoromethyl alkenes with phosphine oxides or phosphonates have been achieved under catalyst‐ and oxidant‐free conditions, giving phosphorylation gem‐difluoroalkenes as products. α‐Trifluoromethyl alkenes bearing various of aryl substituents such as halogen, cyano, ester and heterocyclic groups are available in this transformation. The results of control experiments demonstrated that the mechanism of dehydrogenative/defluorinative cross‐coupling reactions was not a radical route, but might be an SN2′ process involving phosphine oxide anion.  相似文献   

16.
A three‐component transition‐metal‐free amidofluorination of unactivated alkenes and styrenes is presented. α‐Amido‐oxy acids are introduced as efficient and easily accessible amidyl radical precursors that are oxidized by a photoexcited organic sensitizer (Mes‐Acr‐Me) to the corresponding carboxyl radical. Sequential CO2 and aldehyde/ketone fragmentation leads to an N‐centered radical that adds to an alkene. Commercial Selectfluor is used to trap the adduct radical through fluorine‐atom transfer. The transformation features by high functional‐group tolerance, broad substrate scope, and practical mild conditions. Mechanistic studies support the radical nature of the cascade.  相似文献   

17.
Radical halo-nitration of alkenes using iron(III) nitrate nonahydrate and halogen salt has been developed. The present reaction proceeds by radical addition of nitrogen dioxide generated by thermal decomposition of iron(III) nitrate nonahydrate and subsequent trapping of the resultant radical by a halogen atom in the presence of halogen salt. Application of this method to synthesis of nitroalkenes is also described. The practicality of the present method using nontoxic and inexpensive iron reagents has been shown by the application to broad alkenes.  相似文献   

18.
An electrochemical approach to the intramolecular aminooxygenation of unactivated alkenes has been developed. This process is based on the addition of nitrogen‐centered radicals, generated through electrochemical oxidation, to alkenes followed by trapping of the cyclized radical intermediate with 2,2,6,6‐tetramethylpiperidine‐N‐oxyl radical (TEMPO). Difunctionalization of a variety of alkenes with easily available carbamates/amides and TEMPO affords aminooxygenation products in high yields and with excellent trans selectivity for cyclic systems (d.r. up to>20:1). The approach provides a much‐needed complementary route to existing cis‐selective methods.  相似文献   

19.
Bond dissociation enthalpies (BDE) of hydroxylamines containing alkyl, aryl, vinyl, and carbonyl substituents at the nitrogen atom have been determined by using the EPR radical equilibration technique in order to study the effect of the substituents on the O-H bond strength of these compounds. It has been found that substitution of an alkyl group directly bonded to the nitrogen atom with vinyl or aryl groups has a small effect, while substitution with acyl groups induces a large increase of the O-H BDE value. Thus, dialkyl hydroxylamines have O-H bond strengths of only ca. 70 kcal/mol, while acylhydroxylamines and N-hydroxyphthalimide (NHPI), containing two acyl substituents at nitrogen, are characterized by BDE values of ca. 80 and 88 kcal/mol, respectively. Since the phthalimide N-oxyl radical (PINO) has been recently proposed as an efficient oxidation catalyst of hydrocarbons or other substrates, the large BDE value found for the parent hydroxylamine (NHPI) justifies this proposal. Kinetic studies, carried out in order to better understand the mechanism of the NHPI-catalyzed aerobic oxidation of cumene, are consistent with a simple kinetic model where the rate-determining step is the hydrogen atom abstraction from the hydroxylamine by cumylperoxyl radicals.  相似文献   

20.
A highly chemo‐ and regioselective intermolecular 1,2‐aryl‐aminoalkylation of alkenes by photoredox/nickel dual catalysis is described here. This three‐component conjunctive cross‐coupling is highlighted by its first application of primary alkyl radicals, which were not compatible in previous reports. The readily prepared α‐silyl amines could be transferred to α‐amino radicals by photo‐induced single electron transfer step. The radical addition/cross‐coupling cascade reaction proceeds under mild, base‐free and redox‐neutral conditions with good functional group tolerance, and importantly, provides an efficient and concise method for the synthesis of structurally valuable α‐aryl substituted γ‐amino acid derivatives motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号