首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effect of the folding of DNA aptamers on the colloidal stability of gold nanoparticles (AuNPs) to which an aptamer is tethered. On the basis of the studies of two different aptamers (adenosine aptamer and K+ aptamer), we discovered a unique colloidal stabilization effect associated with aptamer folding: AuNPs to which folded aptamer structures are attached are more stable toward salt-induced aggregation than those tethered to unfolded aptamers. This colloidal stabilization effect is more significant when a DNA spacer was incorporated between AuNP and the aptamer or when lower aptamer surface graft densities were used. The conformation that aptamers adopt on the surface appears to be a key factor that determines the relative stability of different AuNPs. Dynamic light scattering experiments revealed that the sizes of AuNPs modified with folded aptamers were larger than those of AuNPs modified with unfolded (but largely collapsed) aptamers in salt solution. From both the electrostatic and steric stabilization points of view, the folded aptamers that are more extended from the surface have a higher stabilization effect on AuNP than the unfolded aptamers. On the basis of this unique phenomenon, colorimetric biosensors have been developed for the detection of adenosine, K+, adenosine deaminase, and its inhibitors. Moreover, distinct AuNP aggregation and redispersion stages can be readily operated by controlling aptamer folding and unfolding states with the addition of adenosine and adenosine deaminase.  相似文献   

2.
The hairpin structure is one of the most common secondary structures in RNA and holds a central position in the stream of RNA folding from a non‐structured RNA to structurally complex and functional ribonucleoproteins. Since the RNA secondary structure is strongly correlated to the function and can be modulated by the binding of small molecules, we have investigated the modulation of RNA folding by a ligand‐assisted formation of loop–loop complexes of two RNA hairpin loops. With a ligand (NCT6), designed based on the ligand binding to the G–G mismatches in double‐stranded DNA, we successfully demonstrated the formation of both inter‐ and intra‐molecular NCT6‐assisted complex of two RNA hairpin loops. NCT6 selectively bound to the two hairpin loops containing (CGG)3 in the loop region. Native polyacrylamide gel electrophoresis analysis of two doubly‐labeled RNA hairpin loops clearly showed the formation of intermolecular NCT6‐assisted loop–loop complex. Förster resonance energy‐transfer studies of RNA constructs containing two hairpin loops, in which each hairpin was labeled with Alexa488 and Cy3 fluorophores, showed the conformational change of the RNA constructs upon binding of NCT6. These experimental data showed that NCT6 simultaneously bound to two hairpin RNAs at the loop region, and can induce the conformational change of the RNA molecule. These data strongly support that NCT6 functions as molecular glue for two hairpin RNAs.  相似文献   

3.
The separate arrangement of target recognition and signal transduction in conventional biosensors often compromises the real‐time response and can introduce additional noise. To address these issues, we combined analyte recognition and signal reporting by mechanochemical coupling in a single‐molecule DNA template. We incorporated a DNA hairpin as a mechanophore in the template, which, under a specific force, undergoes stochastic transitions between folded and unfolded hairpin structures (mechanoescence). Reminiscent of a tuning fork that vibrates at a fixed frequency, the device was classified as a molecular tuning fork (MTF). By monitoring the lifetime of the folded and unfolded hairpins with equal populations, we were able to differentiate between the mono‐ and bivalent binding modes during individual antibody‐antigen binding events. We anticipate these mechanospectroscopic concepts and methods will be instrumental for the development of novel bioanalyses.  相似文献   

4.
An aptamer-based label-free approach to hemin recognition and DNA assay using capillary electrophoresis with chemiluminescence detection is introduced here. Two guanine-rich DNA aptamers were used as the recognition element and target DNA, respectively. In the presence of potassium ions, the two aptamers folded into the G-quartet structures, binding hemin with high specificity and affinity. Based on the G-quartet–hemin interactions, the ligand molecule was specifically recognized with a K d ≈ 73 nM, and the target DNA could be detected at 0.1 μM. In phosphate buffer of pH 11.0, hemin catalyzed the H2O2-mediated oxidation of luminol to generate strong chemiluminescence signal; thus the target molecule itself served as an indicator for the molecule–aptamer interaction, which made the labeling and/or modification of aptamers or target molecules unnecessary. This label-free method for molecular recognition and DNA detection is therefore simple, easy, and effective. Figure A label-free approach to aptamer-based hemin recognition and DNA detection is introduced, which gives great potential for using a small molecule itself as the indicator for molecular recognition and DNA detection thereby avoiding any labeling or modification step  相似文献   

5.
Probing the structure of DNA aptamers with a classic heterocycle   总被引:1,自引:0,他引:1  
DNA aptamers are synthetic, single-stranded DNA oligonucleotides selected by SELEX methods for their binding with specific ligands. Here we present ethidium binding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARG)that bind L-argininamide (L-Arm). The ligand bound form of each aptamer's structure has been reported and each are found to be composed primarily of two domains consisting of a stem helical region and a loop domain that forms a binding pocket for the cognate ligand. Previous thermodynamic experiments demonstrated that the DNA aptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Here we extend those linkage binding studies by examining the binding of the heterocyclic intercalator ethidium to each of the three aptamers by fluorescence and absorption spectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with DeltaG degree's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for each aptamer and is quantitatively diminished in the presence of L-Arm as is the overall fluorescence intensity of ethidium. Together, these results demonstrate that a portion of the bound ethidium is excluded from the aptamer in the presence of a saturating amount of L-Arm. These results demonstrate the utility of ethidium and related compounds for the probing of non-conventional DNA structures and reveal an interesting fundamental thermodynamic linkage in DNA aptamers. Results are discussed in the context of the thermodynamic stability and structure of each of the aptamers examined.  相似文献   

6.
A strategy to extend the detection range of weakly-binding targets is reported that takes advantage of fluorescence resonance energy transfer (FRET)-based bioassays based on molecular beacon aptamers (MBAs) and cationic conjugated polyelectrolytes (CPEs). In comparison to other aptamer-target pairs, the aptamer-based adenosine triphosphate (ATP) detection assays are limited by the relatively weak binding between the two partners. In response, a series of MBAs were designed that have different stem stabilities while keeping the constant ATP-specific aptamer sequence in the loop part. The MBAs are labeled with a fluorophore and a quencher at both termini. In the absence of ATP, the hairpin MBAs can be opened by CPEs via a combination of electrostatic and hydrophobic interactions, showing a FRET-sensitized fluorophore signal. In the presence of ATP, the aptamer forms a G-quadruplex and the FRET signal decreases due to tighter contact between the fluorophore and quencher in the ATP/MBA/CPE triplex structure. The FRET-sensitized signal is inversely proportional to [ATP]. The extension of the detection range is determined by the competition between opening of the ATP/MBA G-quadruplex by CPEs and the composite influence by ATP/aptamer binding and the stem interactions. With increasing stem stability, the weak binding of ATP and its aptamer is successfully compensated to show the resistance to disruption by CPEs, resulting in a substantially broadened detection range (from millimolar up to nanomolar concentrations) and a remarkably improved limit of detection. From a general perspective, this strategy has the potential to be extended to other chemical- and biological-assays with low target binding affinity.  相似文献   

7.
Ion mobility spectrometry, with subsequent mass spectrometric detection, has been employed to study the stability of compact protein conformations of FK-binding protein, hen egg-white lysozyme, and horse heart myoglobin in the presence and absence of bound ligands. Protein ions, generated by electrospray ionization from ammonium acetate buffer, were activated by collision with argon gas to induce unfolding of their compact structures. The collisional cross sections (Ω) of folded and unfolded conformations were measured in the T-Wave mobility cell of a Waters Synapt HDMS (Waters, Altrincham, UK) employing a calibration against literature values for a range of protein standards. In the absence of activation, collisional cross section measurements were found to be consistent with those predicted for folded protein structures. Under conditions of defined collisional activation energies partially unfolded conformations were produced. The degree of unfolding and dissociation induced by these defined collision energies are related to the stability of noncovalent intra- and intermolecular interactions within protein complexes. These findings highlight the additional conformational stability of protein ions in the gas phase resulting from ligand binding.  相似文献   

8.
In vitro selection with either DNA or RNA libraries was performed against the TAR RNA element of HIV-1. The role of the selection conditions on the outcome of the selection was evaluated by varying the magnesium concentration and the temperature. The selection stringency was demonstrated to determine i) the affinity of the best identified aptamers for the TAR target, and ii) the type of interaction between the two partners. Selections performed with a DNA library under low (4 degrees C, 10 mM magnesium) and high stringency (23 degrees C, 3 mM magnesium) led to the emergence of "kissing aptamers"; but even if the motif interacting directly with the TAR loop were identical in the two kinds of aptamers, the consensus was extended from eight to thirteen nucleotides when the Mg(2+) concentration was decreased from 10 to 3 mM. Similar kissing aptamers were selected at 23 degrees C and 37 degrees C starting with two different RNA libraries under identical ionic conditions. In addition, selection performed at 37 degrees C yielded a significant proportion of antisense sequences. Only antisense RNAs complementary to the TAR loop competitively inhibited the association of a Tat peptide with TAR.  相似文献   

9.
Aptamers are synthetic nucleic acids with great potential as analytical tools. However, the length of selected aptamers (typically 60–100 bases) can affect affinity, due to the presence of bases not required for interaction with the target, and therefore, the truncation of these selected sequences and identification of binding domains is a critical step to produce potent aptamers with higher affinities and specificities and lowered production costs. In this paper we report the truncation of an aptamer that specifically binds to β-conglutin (Lup an 1), an anaphylactic allergen. Through comparing the predicted secondary structures of the aptamers, a hairpin structure with a G-rich loop was determined to be the binding motif. The highest affinity was observed with a truncation resulting in an 11-mer sequence that had an apparent equilibrium dissociation constant (K D) of 1.7?×?10?9 M. This 11-mer sequence was demonstrated to have high specificity for β-conglutin and showed no cross-reactivity to other lupin conglutins (α-, δ-, γ-conglutins) and closely related proteins such as gliadin. Finally, the structure of the truncated 11-mer aptamer was preliminarily elucidated, and the GQRS Mapper strongly predicted the presence of a G-quadruplex, which was subsequently corroborated using one-dimensional NMR, thus highlighting the stability of the truncated structure.  相似文献   

10.
设计了一个长度为20个核苷酸的分子信标,建立了有机磷农药和分子信标竞争结合适配体鉴定其活性的方法,对前期筛选的两条适配体进行了活性位点分析和改造.结果表明,分子信标设计合理,性能稳定,其发夹结构在室温下既可成功闭合也可成功打开,最佳的活性鉴定条件为分子信标与适配体添加比例1.25∶1,孵育时间50 min,孵育温度为室温.活性位点分析表明Loop2-4是4种有机磷农药共有的活性位点,Loop2-3及SS4-54适配体5’端和3 '端残余的核苷酸是甲拌磷重要的活性位点,Loop2-2和Loop4-2是丙溴磷和水胺硫磷共有的活性位点,Loop4-3是丙溴磷和氧化乐果共有的活性位点,Loop2-1和Loop4-1是水胺硫磷重要的活性位点.通过基因拼接改造的SS24-PJ-35适配体对丙溴磷和水胺硫磷的结合活性明显提高.  相似文献   

11.
Tang J  Xie J  Shao N  Yan Y 《Electrophoresis》2006,27(7):1303-1311
Aptamers which specifically recognize cytotoxin ricin were successfully selected using the two different in vitro selection methods. One selection method was used to isolate aptamers by affinity chromatography. Another selection method, named CE-SELEX, was carried out using CE as a separation approach. The high separation efficiency of CE evidently improved the rate of enrichment and obviously shortened the selection rounds, with near 87.2% binding just after the fourth round of selection. The aptamers A3, C1, and C5, derived from the two selection methods, were found to possess high affinity and specificity for ricin with the Kd values in the low nanomolar range, and did not recognize abrin toxin similar to ricin in the structures and properties, or BSA. Among the aptamers selected, A3 isolated by affinity chromatography shared extensive sequence similarity with C1 and C5 derived from CE-SELEX. They differed by only one base from each other. Their stable secondary structures predicted also had very similar structure motifs, and all folded a long and internal loop-embedded loop stem structure by base pairing. The ELISA and dot-blot analysis also proved that the selected DNA aptamers had the high specificity to ricin toxin.  相似文献   

12.
We use a recently developed coarse-grained model for DNA to study kissing complexes formed by hybridization of complementary hairpin loops. The binding of the loops is topologically constrained because their linking number must remain constant. By studying systems with linking numbers -1, 0, or 1 we show that the average number of interstrand base pairs is larger when the topology is more favourable for the right-handed wrapping of strands around each other. The thermodynamic stability of the kissing complex also decreases when the linking number changes from -1 to 0 to 1. The structures of the kissing complexes typically involve two intermolecular helices that coaxially stack with the hairpin stems at a parallel four-way junction.  相似文献   

13.
Dynamic equilibrium between the folded and unfolded conformations of single stranded DNA hairpin molecules containing polythymine hairpin loops was investigated using simultaneous two-beam fluorescence cross-correlation spectroscopy and single beam autocorrelation spectroscopy. The hairpins were end-labeled with a fluorescent dye and a quencher, such that folding and unfolding of the DNA hairpin primary structure caused the dye fluorescence to fluctuate on the same characteristic time scale as the folding and unfolding reaction. These fluctuations were observed as the molecules flowed sequentially between two spatially offset, microscopic detection volumes. Cross-correlation analysis of fluorescence from the two detection volumes revealed the translational diffusion and flow properties of the hairpins, as well as the average molecular occupancy of the two volumes. Autocorrelation analysis of the fluorescence from the individual detection volumes revealed the kinetics of hairpin folding and unfolding, with the parameters relating to diffusion, flow, and molecular occupancy constrained to the values determined from the cross-correlation analysis. This allowed unambiguous characterization of the folding and unfolding kinetics, without the need to determine the hydrodynamic properties by analyzing a separate control sample. The analysis revealed nonexponential relaxation kinetics and DNA size-dependent folding times characteristic of dynamic heterogeneity in the DNA hairpin-forming mechanism.  相似文献   

14.
Hybridization probes are often inefficient in the analysis of single‐stranded DNA or RNA that are folded in stable secondary structures. A molecular beacon (MB) probe is a short DNA hairpin with a fluorophore and a quencher attached to opposite sides of the oligonucleotide. The probe is widely used in real‐time analysis of specific DNA and RNA sequences. This study demonstrates how a conventional MB probe can be used for the analysis of nucleic acids that form very stable (Tm>80 °C) hairpin structures. Here we demonstrate that the MB probe is not efficient in direct analysis of secondary structure‐folded analytes, whereas a MB‐based tricomponent probe is suitable for these purposes. The tricomponent probe takes advantage of two oligonucleotide adaptor strands f and m. Each adaptor strand contains a fragment complementary to the analyte and a fragment complementary to a MB probe. In the presence of a specific analyte, the two adaptor strands hybridize to the analyte and the MB probe, thus forming a quadripartite complex. DNA strand f binds to the analyte with high affinity and unwinds its secondary structure. Strand m forms a stable complex only with the fully complementary analyte. The MB probe fluorescently reports the formation of the quadripartite associate. It was demonstrated that the DNA analytes folded in hairpin structures with stems containing 5, 6, 7, 8, 9, 11, or 13 base pairs can be detected in real time with the limit of detection (LOD) lying in the nanomolar range. The stability of the stem region in the DNA analyte did not affect the LOD. Analytes containing single base substitutions in the stem or in the loop positions were discriminated from the fully complementary DNA at room temperature. The tricomponent probe promises to simplify nucleic acid analysis at ambient temperatures in such applications as in vivo RNA monitoring, detection of pathogens, and single nucleotide polymorphism (SNP) genotyping by DNA microarrays.  相似文献   

15.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

16.
We report a novel label-free method for the investigation of the adaptive recognition of small molecules by nucleic acid aptamers using capillary electrophoresis analysis. Cocaine and argininamide were chosen as model molecules, and the two corresponding DNA aptamers were used. These single-strand DNAs folded into their specific secondary structures, which were mainly responsible for the binding of the target molecules with high affinity and specificity. For molecular recognition, the nucleic acid structures then underwent additional conformational changes, while keeping the target molecules stabilized by intermolecular hydrogen bonds. The intrinsic chemical and physical properties of the target molecules enabled them to act as indicators for adaptive binding. Thus any labeling or modification of the aptamers or target molecules were made obsolete. This label-free method for aptamer-based molecular recognition was also successfully applied to biological fluids and therefore indicates that this approach is a promising tool for bioanalysis.  相似文献   

17.
BACKGROUND: The biological function of several viral and bacteriophage proteins, and their arginine-rich subdomains, involves RNA-mediated interactions. It has been shown recently that bound peptides adopt either beta-hairpin or alpha-helical conformations in viral and phage peptide-RNA complexes. We have compared the structures of the arginine-rich peptide domain of HIV-1 Rev bound to two RNA aptamers to determine whether RNA architecture can dictate the conformations of a bound peptide. RESULTS: The core-binding segment of the HIV-1 Rev peptide class II RNA aptamer complex spans the two-base bulge and hairpin loop of the bound RNA and the carboxy-terminal segment of the bound peptide. The bound peptide is anchored in place by backbone and sidechain intermolecular hydrogen bonding and van der Waals stacking interactions. One of the bulge bases participates in U*(A*U) base triple formation, whereas the other is looped out and flaps over the bound peptide in the complex. The seven-residue hairpin loop is closed by a sheared G*A mismatch pair with several pyrimidines looped out of the hairpin fold. CONCLUSIONS: Our structural studies establish that RNA architecture dictates whether the same HIV-1 Rev peptide folds into an extended or alpha-helical conformation on complex formation. Arginine-rich peptides can therefore adapt distinct secondary folds to complement the tertiary folds of their RNA targets. This contrasts with protein-RNA complexes in which elements of RNA secondary structure adapt to fit within the tertiary folds of their protein targets.  相似文献   

18.
We consider how the DNA coil-globule transition progresses via the formation of a toroidal ring structure. We formulate a theoretical model of this transition as a phenomenon in which an unstable single loop generated as a result of thermal fluctuation is stabilized through association with other loops along a polyelectrolyte chain. An essential property of the chain under consideration is that it follows a wormlike chain model. A toroidal bundle of loop structures is characterized by a radius and a winding number. The statistical properties of such a chain are discussed in terms of the free energy as a function of the fraction of unfolded segments. We also present an actual experimental observation of the coil-globule transition of single giant DNA molecules, T4 DNA (165.5 kbp), with spermidine (3+), where intrachain phase segregation appears at a NaCl concentration of more than 10 mM. Both the theory and experiments lead to two important points. First, the transition from a partially folded state to a completely folded state has the characteristics of a continuous transition, while the transition from an unfolded state to a folded state has the characteristics of a first-order phase transition. Second, the appearance of a partially folded structure requires a folded structure to be less densely packed than in the fully folded compact state.  相似文献   

19.
Sugar-oligoamides have been designed and synthesized as structurally simple carbohydrate-based ligands to study carbohydrate-DNA interactions. The general design of the ligands 1-3 has been done as to favor the bound conformation of Distamycin-type gamma-linked covalent dimers which is a hairpin conformation. Indeed, NMR analysis of the sugar-oligoamides in the free state has indicated the presence of a percentage of a hairpin conformation in aqueous solution. The DNA binding activity of compounds 1-3 was confirmed by calf thymus DNA (ct-DNA) NMR titration. Interestingly, the binding of the different sugar-oligoamides seems to be modulated by the sugar configuration. Semiquantitative structural information about the DNA ligand complexes has been derived from NMR data. A competition experiment with Netropsin suggested that the sugar-oligoamide 3 bind to DNA in the minor groove. The NMR titrations of 1-3 with poly(dA-dT) and poly(dG-dC) suggested preferential binding to the ATAT sequence. TR-NOE NMR experiments for the sugar-oligoamide 3-ct-DNA complex both in D(2)O and H(2)O have confirmed the complex formation and given information on the conformation of the ligand in the bound state. The data confirmed that the sugar-oligoamide ligand is a hairpin in the bound state. Even more relevant to our goal, structural information on the conformation around the N-glycosidic linkage has been accessed. Thus, the sugar asymmetric centers pointing to the NH-amide and N-methyl rims of the molecule have been characterized.  相似文献   

20.

The use of aptamers in various analytical applications as molecular recognition elements and alternative to antibodies has led to the development of various platforms that facilitate the sensitive and specific detection of targets ranging from small molecules and proteins to whole cells. The goal of this work was to design a universal and adaptable sandwich-type aptasensor exploiting the unique properties of DNA binding proteins. Specifically, two different enzyme-DNA binding protein conjugates, GOx-dHP and HRP-scCro, were used for the direct detection of a protein using two aptamers for target capture and detection. The specific dsDNA binding sequence for each DNA binding protein tag was incorporated in the form of a hairpin at one end of each aptamer sequence during the synthesis step. Detection was accomplished by an enzymatic (GOx/HRP) cascade reaction after the binding of each enzyme conjugate to its corresponding binding sequence on each aptamer. The proposed sandwich-type aptasensor was validated for the detection of thrombin, which is one of the most commonly used model targets with known dual aptamers. The limit of detection accomplished was 0.92 nM which is comparable with other colorimetric platforms reported in the literature. The sensitivity of the aptasensor was easily modulated by changing the number of dsDNA binding sites incorporated in the aptamer sequences, thus controlling the enzyme stoichiometry. Finally, the potential use of the proposed sensing approach for real sample testing was demonstrated using spiked human plasma and no significant matrix effects were observed when up to 2% plasma was used.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号