首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both trans and cis isomers of azobenzene‐linked bis‐terpyridine ligand L1 were incorporated in rigid macrocycles linked by FeII(tpy)2 (tpy: terpyridine) units. The complex of the longer trans‐ L1 is dinuclear [(trans‐ L1 )2 ? FeII2], whereas the complex of the shorter cis‐ L1 is mononuclear [cis‐ L1? FeII]. The complex cis‐ L1? FeII was not only thermally stable but also photochemically inactive. These results indicate a perfectly locked state of cis‐azobenzene. The stable macrocyclic structure of cis‐ L1? FeII causes locking of the isomerization. To the best of our knowledge, this is first example of dual locking of photo‐ and thermal isomerization of cis‐azobenzene.  相似文献   

2.
Distamycin‐based tetrapeptide ( 1 ) was covalently tethered to both ends of the central dihydroxyazobenzene moiety at either the 2,2′ or 4,4′ positions. This afforded two isomeric, distamycin–azobenzene–distamycin systems, 2 (para) and 3 (ortho), both of them being photoisomerizable. Illumination of these conjugates in solution at approximately 360 nm induced photoisomerization and the time course of the process was followed by UV/Vis and 1H NMR spectroscopy. The kinetics of the thermal reversion at various temperatures of cis to trans isomers of the conjugates obtained after photoillumination were also examined. This afforded the respective thermal‐activation parameters. Both the molecular architecture and the location of the substituent around the core azobenzene determined the rate and activation‐energy barrier for the cis‐to‐trans back‐isomerization of these conjugates in solution. Duplex–DNA binding of the conjugates and the changes in DNA‐binding efficiency upon photoisomerization was also examined by CD spectroscopy, thermal denaturation studies, and a Hoechst displacement assay. The conjugate 2 showed higher DNA‐binding affinity and a greater change in the DNA‐binding efficiency upon photoisomerization compared with its 2,2′‐disubstituted counterpart. The experimental findings were substantiated by using molecular‐docking studies involving each conjugate with a model duplex d[(GC(AT)10CG)]2 DNA molecule.  相似文献   

3.
The ability of three different bifunctional azobenzene linkers to enable the photoreversible formation of a defined intermolecular two‐tetrad G‐quadruplex upon UV/Vis irradiation was investigated. Circular dichroism and NMR spectroscopic data showed the formation of G‐quadruplexes with K+ ions at room temperature in all three cases with the corresponding azobenzene linker in an E conformation. However, only the parapara‐substituted azobenzene derivative enables photoswitching between a nonpolymorphic, stacked, tetramolecular G‐quadruplex and an unstructured state after EZ isomerization.  相似文献   

4.
Photoinduced reversible solid‐to‐liquid transitions of azobenzene‐containing materials can control adhesion. Photoswitchable adhesives based on azobenzene‐containing small molecules and polymers are under intense investigation. The melting points or glass transition temperatures of such azobenzene‐containing materials in trans and cis forms are above and below room temperature, respectively. Photoswitching of these materials results in reversible transcis isomerization and solid‐to‐liquid transitions. The solid trans azobenzene‐containing materials have strong adhesion and the liquid cis azobenzene‐containing materials have weaker adhesion. In this Minireview, we introduce adhesives based on azobenzene‐containing small molecules and polymers. The remaining challenges and perspectives in the field of photoswitchable adhesives using azobenzene‐containing materials are also discussed.  相似文献   

5.
A photochemically interconvertible supramolecular nanotube–nanoparticle system was constructed through secondary assembling of self‐aggregates of amphiphilic porphyrin derivatives mediated by trans‐ and cis‐azobenzene‐bridged bis(permethyl‐β‐cyclodextrin). Significantly, these nanotubes and nanoparticles were able to interconvert upon irradiation at different wavelengths, and this photocontrolled morphological conversion is reversible and recyclable for tens of times, which will provide a feasible and convenient way to construct the ordered nanostructure with various morphologies that can be smartly controlled by the environmentally benign external stimulus.  相似文献   

6.
In water, synthetic amphiphiles composed of a photoresponsive azobenzene moiety and an oligoglycine hydrogen‐bonding moiety selectively self‐assembled into nanotubes with solid bilayer membranes. The nanotubes underwent morphological transformations induced by photoisomerization of the azobenzene moiety within the membranes, and the nature of the transformation depended on the number of glycine residues in the oligoglycine moiety (i.e., on the strength of intermolecular hydrogen bonding). Upon UV‐light irradiation of nanotubes prepared from amphiphiles with the diglycine residue, trans‐to‐cis isomerization induced a transformation from nanotubes (inner diameter (i.d.) 7 nm), several hundreds of nanometers to several tens of micrometers in length, to imperfect nanorings (i.d. 21–38 nm). The cis‐to‐trans isomerization induced by continuous visible‐light irradiation resulted in the stacking of the imperfect nanorings to form nanotubes with an i.d. of 25 nm and an average length of 310 nm, which were never formed by a self‐assembly process. Time‐lapse fluorescence microscopy enabled us to visualize the transformation of nanotubes with an i.d. of 20 nm (self‐assembled from amphiphiles with the monoglycine residue) to cylindrical nanofibers with an i.d. of 1 nm; shrinkage of the hollow cylinders started at the two open ends with simultaneous elongation in the direction of the long axis.  相似文献   

7.
An understanding of the photoisomerization mechanism of molecules bound to a metal surface at the molecular scale is required for designing photoswitches at surfaces. It has remained a challenge to correlate the surface structure and isomerization of photoswitches at ambient conditions. Herein, the photoisomerization of a self‐assembled monolayer of azobenzene‐thiol molecules on a Au surface was investigated using scanning tunneling microscopy and tip‐enhanced Raman spectroscopy. The unique signature of the cis isomer at 1525 cm?1 observed in tip‐enhanced Raman spectra was clearly distinct from the trans isomer. Furthermore, tip‐enhanced Raman images of azobenzene thiols after ultraviolet and blue light irradiation are shown with nanoscale spatial resolution, demonstrating a reversible conformational change. Interestingly, the cis isomers of azobenzene‐thiol molecules were preferentially observed at Au grain edges, which is confirmed by density functional theory.  相似文献   

8.
The azobenzene unit used as a photochemically and thermally switchable linker in the assembly of a bis‐calix[4]pyrrole receptor provides a means to modulate the binding of bis‐carboxylates of significant biological importance in cancer research. Conversely, the complexation of different bis‐anionic guests has significant kinetic effects on both the photochemical and thermal trans/cis isomerization of the azobenzene unit.  相似文献   

9.
Controlling the motion of artificial self‐propelled micro‐ and nanomotors independent of the fuel concentration is still a great challenge. Here we describe the first report of speed manipulation of supramolecular nanomotors via blue light‐responsive valves, which can regulate the access of hydrogen peroxide fuel into the motors. Light‐sensitive polymeric nanomotors are built up via the self‐assembly of functional block copolymers, followed by bowl‐shaped stomatocyte formation and incorporation of platinum nanoparticles. Subsequent addition of β‐cyclodextrin (β‐CD) leads to the formation of inclusion complexes with the trans‐isomers of the azobenzene derivatives grafted from the surfaces of the stomatocytes. β‐CDs attachment decreases the diffusion rate of hydrogen peroxide into the cavities of the motors because of partly blocking of the openings of the stomatocyte. This results in a lowering of the speed of the nanomotors. Upon blue light irradiation, the trans‐azobenzene moieties isomerize to the cis‐form, which lead to the detachment of the β‐CDs due to their inability to form complexes with the cis‐isomer. As a result, the speed of the nanomotors increases accordingly. Such a conformational change provides us with the unique possibility to control the speed of the supramolecular nanomotor via light‐responsive host–guest complexation. We envision that such artificial responsive nano‐systems with controlled motion could have potential applications in drug delivery.  相似文献   

10.
A light‐controlled molecular machine based on cyclic azobenzenophanes consisting of a dioxynaphthalene rotating unit and a photoisomerizable dioxyazobenzene unit bridged by methylene spacers is reported. In compounds 1 and 2 , 1,5‐ and 2,6‐dioxynaphthalene moieties, respectively, are linked to p‐dioxyazobenzene by different methylene spacers (n=2 in 1 a and 2 ; n=3 in 1 b ), whereas a 1,5‐dioxynaphthalene moiety is bonded to m‐dioxyazobenzene by bismethylene spacers in 3 . In 1 b and 2 , the naphthalene ring can rotate freely in both the trans and cis states at room temperature. The rotation speed can be controlled either by photoinduced reversible transcis (EZ) isomerization of the azobenzene or by keeping the system at low temperature, as is evident from its NMR spectra. Furthermore, for the first time, we demonstrate a light‐controlled molecular brake, wherein the rotation of the naphthalene moiety through the cyclophane is completely OFF in the trans isomer of compound 3 due to its smaller cavity size. Such restricted rotation imparts planar chirality to the molecule, and the corresponding enantiomers could be resolved by chiral HPLC. However, the rotation of the naphthalene moiety is rendered ON in the cis isomer due to its increased cavity size, and it is manifested experimentally by the racemization of the separated enantiomers by photoinduced EZ isomerization.  相似文献   

11.
The cyclic amphiphilic polymers with azobenzene in main chain, cyclic azobenzene tetraethylene glycol polystyrene (cyclic‐Azo‐TEG‐PS) with different molecular weights, were successfully synthesized by combining atom transfer radical polymerization (ATRP) and Cu (I)‐catalyzed azide/alkyne cycloaddition (CuAAC). Gel permeation chromatography (GPC), proton nuclear resonance (1H NMR), Fourier transform‐infrared (FT‐IR), and matrix‐assisted laser desorption/ionization time of flight (MALDI‐TOF) mass spectrometry were used to prove the complete conversion from linear polymers to cyclic ones. The thermal properties and photoisomerization behaviors of obtained cyclic polymers have been investigated by comparison with the linear analogues. The cyclic polymer displayed a higher glass transition temperature compared with the linear one, measured by differential scanning calorimetry (DSC). It was found that the trans‐to‐cis and cis‐to‐trans isomerization of cyclic polymers was both slower than that of their respective linear counterparts upon irradiation by UV/visible light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1834–1841  相似文献   

12.
Summary: Novel azobenzene‐functionalized hydroxypropyl methylcellulose (AZO‐HPMC) polymers and their α‐cyclodextrin (α‐CD) complexes have been prepared. These polymers show interesting sol‐gel transition behavior in aqueous solutions. In the absence of α‐CD, the gelation temperature increases after UV irradiation, while in the presence of α‐CD, the gelation temperature decreases after UV irradiation. The difference in the gelation temperatures between the trans and cis samples of AZO‐HPMC opens a wide operating window for reversible regulation of the sol‐gel transition behavior by photoirradiation.

The UV‐induced cis/trans isomerism of azobenzene‐functionalized hydroxypropyl methylcellulose and its α‐cyclodextrin complexes.  相似文献   


13.
Heating and cooling can induce reversible solid‐to‐liquid transitions of matter. In contrast, athermal photochemical processes can induce reversible solid‐to‐liquid transitions of some newly developed azobenzene compounds. Azobenzene is photoswitchable. UV light induces trans‐to‐cis isomerization; visible light or heat induces cis‐to‐trans isomerization. Trans and cis isomers usually have different melting points (Tm) or glass transition temperatures (Tg). If Tm or Tg of an azobenzene compound in trans and cis forms are above and below room temperature, respectively, light may induce reversible solid‐to‐liquid transitions. In this Review, we introduce azobenzene compounds that exhibit photoinduced reversible solid‐to‐liquid transitions, discuss the mechanisms and design principles, and show their potential applications in healable coatings, adhesives, transfer printing, lithography, actuators, fuels, and gas separation. Finally, we discuss remaining challenges in this field.  相似文献   

14.
Copolymer containing new thermally reversible click chemistry‐assisted triazole‐substituted azobenzene and fulgimide units in the pendant F‐co‐A was prepared by free‐radical solution addition polymerization technique. The F and A were also prepared for comparison. The DSC analysis of F indicates that the polymer possessing the C‐form of fulgimide unit exhibited higher Tm than that of E‐form of the same polymer and revealed that the C‐form of fulgimide unit in F is highly ordered. The cis‐trans back isomerization behavior of the click chemistry‐assisted triazole‐substituted azobenzene unit in film A has thermal irreversibility, while in F‐co‐A it exhibited thermal reversibility. The UV‐exposed film of F‐co‐A heated around Tg leads to cis‐trans back isomerization of azobenzene unit and thermally stable C‐form of fulgimide which retains its conjugated structure where both the photochromic units are converted into planar conformations and exhibit high fluorescence properties. The fluorescence maxima of C‐form in F‐co‐A red shifted compared with F , because the substituted triazole ring in the azobenzene unit stabilized the C‐form of fulgimide unit. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7843–7860, 2008  相似文献   

15.
A novel visible light responsive random copolymer consisting of hydrophobic azobenzene‐containing acrylate units and hydrophilic acrylic acid units has been prepared. The azobenzene molecule bearing methoxy groups at all four ortho positions is readily synthesized by one‐step conversion of diazotization. The as‐prepared polymer can self‐assemble into nanoparticles in water due to its amphiphilic nature. The tetra‐o‐methoxy‐substituted azobenzene‐functionalized polymer can exhibit the trans‐to‐cis photoswitching under the irradiation with green light of 520 nm and the cis‐to‐trans photoswitching under the irradiation with blue light of 420 nm in both solution and aggregate state. The morphologies of the self‐assembled nanoparticles are revealed by TEM and DLS. The controlled release of loaded molecules from the nanoparticles can be realized by adjusting pH value since the copolymer possesses pH responsive acrylic acid groups. The fluorescence of loaded Nile Red in the nanoparticles can be tuned upon the visible light irradiation. The reversible photoswitching of the azobenzene‐functionalized polymer under visible light may endow the polymer with wide applications without using ultraviolet light at all. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2768–2775  相似文献   

16.
We present a quaterthiophene and sexithiophene that can reversibly change their effective π-conjugation length through photoexcitation. The reported compounds make use of light-responsive molecular actuators consisting of an azobenzene attached to a bithiophene unit by both direct and linker-assisted bonding. Upon exposure to 350 nm light, the azobenzene undergoes trans-to-cis isomerization, thus mechanically inducing the oligothiophene to assume a planar conformation (extended π-conjugation). Exposure to 254 nm wavelength promotes azobenzene cis-to-trans isomerization, forcing the thiophenic backbones to twist out of planarity (confined π-conjugation). Twisted conformations are also reached by cis-to-trans thermal relaxation at a rate that increases proportionally with the conjugation length of the oligothiophene moiety. The molecular conformations of quaterthiophene and sexithiophene were characterized by using steady-state UV-vis spectroscopy, X-ray crystallography and quantum-chemical modeling. Finally, we tested the proposed light-responsive oligothiophenes in field-effect transistors to probe the photo-induced tuning of their electronic properties.  相似文献   

17.
A simple strategy for the immobilization of Cy3‐labeled single strand DNA (Cy3‐ssDNA) on a Si(001) surface and its release under control of both light and pH stimuli is presented. In order to prepare a dual pH/light‐triggered surface, positively chargeable azobenzene molecules are self‐assembled on the Si(001) surface. The surface wettability of this substrate can be changed under influence of both light and pH conditions. The substrates can be positively charged under mildly acidic conditions. The pH‐sensitive behavior of the film allows binding of Cy3‐ssDNA on the functionalized Si(001) surface through e?ective electrostatic interactions with the negatively charged polynucleotide backbone. Moreover, irradiation of the film with UVA light induces transcis isomerization of the azobenzene units on the surface. As a result, the binding a?nity for DNA decreases due to the changing surface hydrophilicity. In order to understand and control the reversible photoswitchable mechanism of this surface, water contact angles are measured after UVA and visible light irradiation. The release of DNA from a dual pH/light‐sensitive sample is performed using fluorescence microscopy. The results show that irradiation of the film with UVA light induces transcis isomerization of the photoresponsive azobenzene units; this leads to significant changes in the surface hydrophilicity and reduces the binding affinity for DNA.  相似文献   

18.
A new photoswitch for DNA hybridization involving para‐substituted azobenzenes (such as isopropyl‐ or tert‐butyl‐substituted derivatives) with L ‐threoninol as a linker was synthesized. Irradiation of the modified DNA with visible light led to dissociation of the duplex owing to the destabilization effect of the bulky substituent on the trans‐azobenzene. In contrast, trans‐to‐cis isomerization (UV light irradiation) facilitated duplex formation. The direction of this photoswitching mode was entirely reversed relative to the previous system with an unmodified azobenzene on D ‐threoninol whose trans form turned on the hybridization, and cis form turned it off. Such reversed and reversible photoswitching of DNA hybridization was directly demonstrated by using fluorophore‐ and quencher‐attached oligonucleotides. Furthermore, it was revealed that the cis‐to‐trans thermal isomerization was greatly suppressed in the presence of the complementary strand owing to the formation of the more‐stable duplex in the cis form.  相似文献   

19.
Geometric isomerization can expand the scope of biological activities of natural products. The observed chemical diversity among the pseurotin‐type fungal secondary metabolites is in part generated by a trans to cis isomerization of an olefin. In vitro characterizations of pseurotin biosynthetic enzymes revealed that the glutathione S‐transferase PsoE requires participation of the bifunctional C‐methyltransferase/epoxidase PsoF to complete the trans to cis isomerization of the pathway intermediate presynerazol. The crystal structure of the PsoE/glutathione/presynerazol complex indicated stereospecific glutathione–presynerazol conjugate formation is the principal function of PsoE. Moreover, PsoF was identified to have an additional, unexpected oxidative isomerase activity, thus making it a trifunctional enzyme which is key to the complexity generation in pseurotin biosynthesis. Through the study, we identified a novel mechanism of accomplishing a seemingly simple trans to cis isomerization reaction.  相似文献   

20.
Bis(clickable) mesoporous silica nanospheres (ca. 100 nm) were obtained by the co‐condensation of TEOS with variable amounts (2–5 % each) of two clickable organosilanes in the presence of CTAB. Such nanoparticles could be easily functionalized with two independent functions using the copper‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction to transform them into nanomachines bearing cancer cell targeting ligands with the ability to deliver drugs on‐demand. The active targeting was made possible after anchoring folic acid by CuAAC click reaction, whereas the controlled delivery was performed by clicked azobenzene fragments. Indeed, the azobenzene groups are able to obstruct the pores of the nanoparticles in the dark whereas upon irradiation in the UV or in the blue range, their trans‐to‐cis photoisomerization provokes disorder in the pores, enabling the delivery of the cargo molecules. The on‐command delivery was proven in solution by dye release experiments, and in vitro by doxorubicin delivery. The added value of the folic acid ligand was clearly evidenced by the difference of cell killing induced by doxorubicin‐loaded nanoparticles under blue irradiation, depending on whether the particles featured the clicked folic acid ligand or not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号