首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
α‐Iminopyridine (α‐IP) is an important redox‐noninnocent ligand. The substituents on the imino function of α‐IPs have important impact on the reaction selectivity with diethylzinc. For the α‐IPs with a hydrogen substituent on the imino carbon, reduction occurred for the non‐bulky N‐substituents phenyl and 2‐methylphenyl groups, whereas alkyl addition and coupling reactions can be selectively achieved for the sterically bulky N‐substituents 2,6‐dimethylphenyl or 2,4,6‐trimethylphenyl group. However, for the α‐IPs with a CH3 substituent on the imino carbon, the deprotonation reaction happened regardless of the N‐substituents of 2‐methylphenyl or 2,6‐dimethylphenyl group. All the products were isolated and characterized by single‐crystal X‐ray diffraction. The possible mechanisms of these reactions were also discussed.  相似文献   

2.
Isoimperatorin (IP) and phellopterin (PP) are two furocoumarins existing in Angelicae Dahuricae Radix. There is an isopentenyloxyl substituted at C‐5 in IP, and an isopentenyloxyl and a methoxyl substituted at C‐8 and C‐5, respectively, in PP. To elucidate the in vivo metabolic characteristics of PP and IP, HPLC coupled with diode array detector and electrospray ionization ion trap time‐of‐flight mass spectrometry technique was used. In total, 111 metabolites, including 53 new ones, were identified from the urine and plasma samples of rats after oral administration of IP and PP, respectively. The metabolites were formed through eight reactions on IP and PP: oxidation, hydroxylation–hydrogenation, carboxylation on the isopentenyloxyl, O‐dealkylation, hydroxylation on the furocoumarin nucleus, ring‐opening reaction on the furan ring and reduction or ring‐opening reaction on the lactone ring. Among these, hydroxylation on the furocoumarin nucleus was found for the first time for in vivo metabolites of PP and IP, and the ring‐opening reaction on the furan ring or lactone ring was found for the first time for in vivo metabolites of isopentenyloxyl furocoumarins. The research gave us a new insight into the in vivo metabolic profiles of IP and PP, which could help us better understand their important roles as two active constituents of Angelicae Dahuricae Radix.  相似文献   

3.
Development of rechargeable lithium metal battery (LMB) remains a challenge because of uneven lithium deposition during repeated cycles of charge and discharge. Ionic liquids have received intensive scientific interest as electrolytes because of their exceptional thermal and electrochemical stabilities. Ionic liquid and ionic‐liquid–nanoparticle hybrid electrolytes based on 1‐methy‐3‐propylimidazolium (IM) and 1‐methy‐3‐propylpiperidinium (PP) have been synthesized and their ionic conductivity, electrochemical stability, mechanical properties, and ability to promote stable Li electrodeposition investigated. PP‐based electrolytes were found to be more conductive and substantially more efficient in suppressing dendrite formation on cycled lithium anodes; as little as 11 wt % PP‐IL in a PC‐LiTFSI host produces more than a ten‐fold increase in cell lifetime. Both PP‐ and IM‐based nanoparticle hybrid electrolytes provide up to 10 000‐fold improvements in cell lifetime than anticipated based on their mechanical modulus alone. Galvanostatic cycling measurements in Li/Li4Ti5O12 half cells using IL–nanoparticle hybrid electrolytes reveal more than 500 cycles of trouble‐free operation and enhanced rate capability.  相似文献   

4.
Protein kinase plays a vital role in regulating signal‐transduction pathways and its simple and quick detection is highly desirable because traditional kinase assays typically rely on a time‐consuming kinase‐phosphorylation process (ca. 1 h). Herein, we report a new and rapid fluorescence‐based sensing platform for probing the activity of protein kinase that is based on the super‐quenching capacity of graphene oxide (GO) nanosheets and specific recognition of the aptameric peptide (FITC‐IP20). On the GO/peptide platform, the fluorescence quenching of FITC‐IP20 that is adsorbed onto GO can be restored by selective binding of active protein kinase to the aptameric peptide, thereby resulting in the fast switch‐on detection of kinase activity (ca. 15 min). The feasibility of this method has been demonstrated by the sensitive measurement of the activity of cAMP‐dependent protein kinase (PKA), with a detection limit of 0.053 mU μL?1. This assay technique was also successfully applied to the detection of kinase activation in cell lysate.  相似文献   

5.
The catalyst system Nd(acac)3·2 H2O/Bu2Mg/CHCl3 shows a fairly high activity in both the homo‐ and copolymerization of isoprene (IP) and styrene (St) in toluene at 60°C. Copolymers obtained from various comonomer feed ratios were characterized by means of NMR spectroscopy and gel‐permeation chromatography. The polyisoprene and poly(IP‐co‐St) obtained predominantly consist of cis‐1,4 IP units. Monomer reactivity ratios were evaluated to be rIP = 5.4 and rSt = 0.38 in the copolymerization.  相似文献   

6.
Sodium doped silicon clusters (SinNam, 3n11, 1m4) were produced by two independent laser vaporization methods and their ionization potentials were measured by scanning the wavelength of the UV dye laser. The IPs of most SinNam clusters decrease monotonously with the number of Na atoms, but IPs of Si7Nam and Si10Nam clusters show an apparent even-odd alternation; odd numbers of Na atoms efficiently decrease the IP but even numbers of Na atoms never significantly decrease the IPs. In addition, the reactivity of SinNam clusters for NO molecules was investigated with a fast flow reactor, and an anti-correlation between IP and the reactivity was clearly observed; clusters having high IP show low reactivity andvice versa.  相似文献   

7.
Diphospho‐myo‐inositol phosphates (PP‐InsPy) are an important class of cellular messengers. Thus far, no method for the transport of PP‐InsPy into living cells is available. Owing to their high negative charge density, PP‐InsPy will not cross the cell membrane. A strategy to circumvent this issue involves the generation of precursors in which the negative charges are masked with biolabile groups. A PP‐InsPy prometabolite would require twelve to thirteen biolabile groups, which need to be cleaved by cellular enzymes to release the parent molecules. Such densely modified prometabolites of phosphate esters and anhydrides have never been reported to date. This study discloses the synthesis of such agents and an analysis of their metabolism in tissue homogenates by gel electrophoresis. The acetoxybenzyl‐protected system is capable of releasing 5‐PP‐InsP5 in mammalian cell/tissue homogenates within a few minutes and can be used to release 5‐PP‐InsP5 inside cells. These molecules will serve as a platform for the development of fundamental tools required to study PP‐InsPy physiology.  相似文献   

8.
The Ni amide and hydroxide complexes [(PCP)Ni(NH2)] ( 2 ; PCP=bis‐2,6‐di‐tert‐butylphosphinomethylbenzene) and [(PCP)Ni(OH)] ( 3 ) were prepared by treatment of [(PCP)NiCl] ( 1 ) with NaNH2 or NaOH, respectively. The conditions for the formation of 3 from 1 and NaOH were harsh (2 weeks in THF at reflux) and a more facile synthetic route involved protonation of 2 with H2O, to generate 3 and ammonia. Similarly the basic amide in 2 was protonated with a variety of other weak acids to form the complexes [(PCP)Ni(2‐Me‐imidazole)] ( 4 ), [(PCP)Ni(dimethylmalonate)] ( 5 ), [(PCP)Ni(oxazole)] ( 6 ), and [(PCP)Ni(CCPh)] ( 7 ), respectively. The hydroxide compound 3 , could also be used as a Ni precursor and treatment of 3 with TMSCN (TMS=trimethylsilyl) or TMSN3 generated [(PCP)Ni(CN)] ( 8 ) or [(PCP)Ni(N3)] ( 9 ), respectively. Compounds 3–7 , and 9 were characterized by X‐ray crystallography. Although 3 , 4 , 6 , 7 , and 9 are all four‐coordinate complexes with a square‐planar geometry around Ni, 5 is a pseudo‐five‐coordinate complex, with the dimethylmalonate ligand coordinated in an X‐type fashion through one oxygen atom, and weakly as an L‐type ligand through another oxygen atom. Complexes 2–9 were all reacted with carbon dioxide. Compounds 2 – 4 underwent facile reaction at low temperature to form the κ1O carboxylate products [(PCP)Ni{OC(O)NH2}] ( 10 ), [(PCP)Ni{OC(O)OH}] ( 11 ), and [(PCP)Ni{OC(O)‐2‐Me‐imidazole}] ( 12 ), respectively. Compounds 10 and 11 were characterized by X‐ray crystallography. No reaction was observed between 5 – 9 and carbon dioxide, even at elevated temperatures. DFT calculations were performed to model the thermodynamics for the insertion of carbon dioxide into 2 – 9 to form a κ1O carboxylate product and understand the pathways for carbon dioxide insertion into 2 , 3 , 6 , and 7 . The computed free energies indicate that carbon dioxide insertion into 2 and 3 is thermodynamically favorable, insertion into 8 and 9 is significantly uphill, insertion into 5 and 7 is slightly uphill, and insertion into 4 and 6 is close to thermoneutral. The pathway for insertion into 2 and 3 has a low barrier and involves nucleophilic attack of the nitrogen or oxygen lone pair on electrophilic carbon dioxide. A related stepwise pathway is calculated for 7 , but in this case the carbon of the alkyne is significantly less nucleophilic and as a result, the barrier for carbon dioxide insertion is high. In contrast, carbon dioxide insertion into 6 involves a single concerted step that has a high barrier.  相似文献   

9.
Direct use of low pressures of CO2 as a C1 source without concentration from gas mixtures is of great interest from an energy‐saving viewpoint. Porous heterogeneous catalysts containing both adsorption and catalytically active sites are promising candidates for such applications. Here, we report a porous coordination polymer (PCP)‐based catalyst, PCP‐RuII composite, bearing a RuII‐CO complex active for CO2 reduction. The PCP‐RuII composite showed improved CO2 adsorption behavior at ambient temperature. In the photochemical reduction of CO2 the PCP‐RuII composite produced CO, HCOOH, and H2. Catalytic activity was comparable with the corresponding homogeneous RuII catalyst and ranks among the highest of known PCP‐based catalysts. Furthermore, catalytic activity was maintained even under a 5 % CO2/Ar gas mixture, revealing a synergistic effect between the adsorption and catalytically active sites within the PCP‐RuII composite.  相似文献   

10.
We synthesized Mo(NC 6F5)(CHCM e2Ph)(TPPO )(PP hMe2)Cl (TPPO = 2,3,5,6‐tetraphenylphenoxide), Mo(NC 6F5)(CHCM e2Ph)(TTBTO )(PP hMe2)Cl (TTBTO = 2,6‐di(3′,5′‐di‐tert‐butylphenyl)phenoxide), and Mo(NC 6F5)(CHCM e2Ph)(TPPO )(PP hMe2)(CF 3Pyr) (CF 3Pyr = 3,4‐bistrifluoromethylpyrrolide), in order to evaluate them as catalysts for the homocoupling of 3‐methyl‐1‐butene. They were compared with Mo(NC 6F5)(CHCM e2Ph)(HMTO )(PP hMe2)Cl (HMTO = 2,6‐dimesitylphenoxide), Mo(NC 6F5)(CHCM e2Ph)(HIPTO )(PP hMe2)Cl (HIPTO = 2,6‐di(2′,4′,6′‐triisopropylphenyl)phenoxide), and several other Mo and Ru catalysts. In the best cases turnover numbers (TON s) of 400 – 700 were observed for the homocoupling of 3‐methyl‐1‐butene in a closed vessel (ethylene not removed).  相似文献   

11.
A novel method based on high‐performance ion chromatography inductively coupled plasma mass spectrometry employing strong anion exchange chromatography with HNO3 gradient elution for simultaneous analysis of orthophosphate and myo‐inositol hexakisphosphate (IP6) in soil solution and plant extracts is presented. As inductively coupled plasma mass spectrometry analysis of phosphorus at m/z 31 is hampered by N‐based interferences, 31P was measured as 31P16O+ at m/z 47 employing dynamic reaction cell technique with O2 as reaction gas. Orthophosphate and IP6 were separated within a total chromatographic run‐time of 12 min revealing a limit of detection of 0.3 μmol/L. The coefficients of determination obtained in a working range of 1–100 and 1–30 μmol/L were 0.9991 for orthophosphate and 0.9968 for IP6, respectively. The method was successfully applied to extracts from three different soils as well as root and shoot extracts of Brassica napus L. The precision of three independently prepared soil extracts was in the range of 4–10% relative standard deviation for PO43? and 3–8% relative standard deviation for IP6. Soil adsorption/desorption kinetics for IP6/orthophosphate were performed for investigating the sorption behavior of the two P species in the experimental soils.  相似文献   

12.
Determining the absolute band edge positions in solid materials is crucial for optimising their performance in wide-ranging applications including photocatalysis and electronic devices. However, obtaining absolute energies is challenging, as seen in CeO2, where experimental measurements show substantial discrepancies in the ionisation potential (IP). Here, we have combined several theoretical approaches, from classical electrostatics to quantum mechanics, to elucidate the bulk and surface contributions to the IP of metal oxides. We have determined a theoretical bulk contribution to the IP of stoichiometric CeO2 of only 5.38 eV, while surface orientation results in intrinsic IP variations ranging from 4.2 eV to 8.2 eV. Highly tuneable IPs were also found in TiO2, ZrO2, and HfO2, in which surface polarisation plays a pivotal role in long-range energy level shifting. Our analysis, in addition to rationalising the observed range of experimental results, provides a firm basis for future interpretations of experimental and computational studies of oxide band structures.  相似文献   

13.
A valence‐universal multireference coupled cluster (VUMRCC) theory, realized via the eigenvalue independent partitioning (EIP) route, has been implemented with full inclusion of triples excitations for computing and analyzing the entire main and several satellite peaks in the ionization potential spectra of several molecules. The EIP‐VUMRCC method, unlike the traditional VUMRCC theory, allows divergence‐free homing‐in to satellite roots which would otherwise have been plagued by intruders, and is thus numerically more robust to obtain more efficient and dependable computational schemes allowing more extensive use of the approach. The computed ionization potentials (IPs) as a result of truncation of the (N−1) electron basis manifold involving virtual functions such as 2h‐p and 3h‐2p by different energy thresholds varying from 5 to 15 a.u. with 1 a.u. intervals as well as thresholds such as 20, 25, and 30 a.u. have been carefully looked into. Cutoff at around 25 a.u. turns out to be an optimal threshold. Molecules such as C2H4 and C2H2 (X = D,T), and N2 and CO (X = D,T,Q) with Dunning's cc‐pVXZ bases have been investigated to determine all main and 2h‐p shake‐up and 3h‐2p double shake‐up satellite IPs. We believe that the present work will pave the way to a wider application of the method by providing main and satellite IPs for some problematic N‐electron closed shell systems. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
We applied the spectral-representation technique developed by Katsuki and Huzinaga as a model potential in calculating the electronic structure of Cu clusters. The characteristics of this potential were closely investigated in Cu and Cu2. For Cu, Cu2, Cu5, Cu9, and Cu13, we performed all-electron ab initio self-consistent field calculations and model-potential calculations where 3p, 3d, and 4s electrons, and 3d and 4s electrons are treated as valence electrons. The ionization potentials (IPs) given by the all-electron calculations were 6.26, 5.55, 4.52, 4.02, and 4.08 eV for Cu, Cu2, Cu5, Cu9, and Cu13, respectively. The IPs given by the model-potential calculations were 6.25, 5.56, 4.62, 4.09, and 4.23 eV for the 3p-, 3d-, and 4s-valence electrons, and 6.26, 5.68, 4.71, 4.07, and 4.19 eV for the 3d- and 4s-valence electrons. The IPs given by the model-potential calculations agree well with those of the all-electron calculations. We also performed model-potential calculations where only the 4s electrons were treated as valence electrons. The calculated IPs were 6.47, 5.98, 5.38, 4.63, and 4.88 eV for Cu, Cu2, Cu5, Cu9, and Cu13, respectively. These are ca. 0.8 eV higher than the IPs by the all-electron calculation for the larger clusters of Cu5, Cu9, and Cu13. The higher IPs originate from the expulsion of the 3d electrons from the valence electrons. We also performed model-potential calculations with 4s electrons for Cu74. The calculated IP is 4.61 eV, which is estimated to be 0.8 eV larger than that obtained by the all-electron calculation. The IPs with correlation corrections are 7.7, 7.4, 6.3, 5.8, 5.9, and 5.6 eV for Cu, Cu2, Cu5, Cu9, Cu13, and Cu74, respectively. Experimental values are 7.73, 7.37, 6.30, 5.37, 5.67, and 5.26 eV. The agreement between the two is fairly good. The electron affinities are also discussed. © 1996 by John Wiley & Sons, Inc.  相似文献   

15.
Neuronal-regulated cell death (RCD) due to the accumulation of ROS within the central nervous system (CNS) is one of the crucial causes of central system diseases. Caspase-dependent apoptosis is the only form of RCD. As research progressed, several nonapoptotic cell death pathway RCDs were identified. Ferroptosis is a nonapoptotic RCD characterized by lipid peroxidation and plasma membrane damage. Polygonatum cyrtonema Hua. Polysaccharides (PCP) are an effective antioxidant. Based on this, the protective effect and mechanism of PCP against H2O2-induced microglial injury were investigated. Furthermore, the protective mechanism of PCP against ferroptosis in microglia was explored. Our results indicated that PCP could reduce oxidative stress-induced ROS accumulation by activating the NRF2/HO-1 signaling pathway, thus attenuating RCD in microglia. Subsequent studies have revealed that PCP alleviates ferroptosis in microglia due to protein levels of ERASTIN/RSL3 inhibitor SLC7A11/GPX4 by activating the NRF2/HO-1 signaling pathway. Therefore, we hypothesized that PCP exerts antioxidative and anti-ferroptosis effects by activating the expression of the NRF2/HO-1 pathway. This facilitates new ideas for clinically effective prevention and treatment of diseases due to accumulated reactive oxygen species in the CNS. Simultaneously, PCP has the development potential as a new drug candidate for treating CNS diseases.  相似文献   

16.
Spatiotemporal control over biochemical signaling processes involving G protein‐coupled receptors (GPCRs) is highly desired for dissecting their complex intracellular signaling. We developed sixteen photoswitchable ligands for the human histamine H3 receptor (hH3R). Upon illumination, key compound 65 decreases its affinity for the hH3R by 8.5‐fold and its potency in hH3R‐mediated Gi protein activation by over 20‐fold, with the trans and cis isomer both acting as full agonist. In real‐time two‐electrode voltage clamp experiments in Xenopus oocytes, 65 shows rapid light‐induced modulation of hH3R activity. Ligand 65 shows good binding selectivity amongst the histamine receptor subfamily and has good photolytic stability. In all, 65 (VUF15000) is the first photoswitchable GPCR agonist confirmed to be modulated through its affinity and potency upon photoswitching while maintaining its intrinsic activity, rendering it a new chemical biology tool for spatiotemporal control of GPCR activation.  相似文献   

17.
Spatiotemporal control over biochemical signaling processes involving G protein‐coupled receptors (GPCRs) is highly desired for dissecting their complex intracellular signaling. We developed sixteen photoswitchable ligands for the human histamine H3 receptor (hH3R). Upon illumination, key compound 65 decreases its affinity for the hH3R by 8.5‐fold and its potency in hH3R‐mediated Gi protein activation by over 20‐fold, with the trans and cis isomer both acting as full agonist. In real‐time two‐electrode voltage clamp experiments in Xenopus oocytes, 65 shows rapid light‐induced modulation of hH3R activity. Ligand 65 shows good binding selectivity amongst the histamine receptor subfamily and has good photolytic stability. In all, 65 (VUF15000) is the first photoswitchable GPCR agonist confirmed to be modulated through its affinity and potency upon photoswitching while maintaining its intrinsic activity, rendering it a new chemical biology tool for spatiotemporal control of GPCR activation.  相似文献   

18.
An overview of our latest findings on the photoionization of metallocarbohedrene clusters (Met-Cars) is presented. The ionization potentials (IPs) of titanium and zirconium Met-Cars of the stoichiometry Ti8–x Zr x C12 (x=0–4, 8) were determined by studying their photoionization efficiency spectra near threshold. It was found that the IPs are about 4 eV and decrease smoothly as the Ti/Zr ratio decreases. Comparison of the determined IPs with those predicted by theoretical calculations by other groups suggests that the geometry of the Met-Cars is that of the tetrahedral cage structure with T d symmetry, assuming a high degree of accuracy in the IP calculations. In another experiment, we investigated the mechanism of the delayed ionization of both single- and binary-metal Met-Cars. Using a reflectron time-of-flight mass spectrometer with a modified Wiley–McLaren double acceleration region, we measured ionization rates arising from the electron emission of Met-Cars composed of various transition metals under different photoionization conditions, which led to the conclusion that a thermionic emission mechanism dominantly contributes to the delayed ionization.  相似文献   

19.
The synthesis of electron‐poor PCP pincer ligands 1,3‐((C6F5)2PO)2C6H4, 1,3‐((C6F5)2PCH2)2C6H4, and 1‐((C6F5)2PO)‐3‐(tBu2PCH2)C6H4, and their coordination chemistry to platinum and palladium is described. The most electron‐poor ligand 1,3‐((C6F5)2PO)2C6H4 (POCOPH) reacts with Group 10 metal chloride precursors to form a range of unusual cis, trans‐dimers of the type κ2‐P,P‐[(POCOPH)MCl(L)]2 (M=Pt, Pd; L=Cl, Me), which undergo metallation to form [(POCOP)MCl] pincer complexes only under prolonged thermolysis. The formation of such cis,trans‐dimers during pincer complex formation can be mitigated through the use of starting materials with more strongly binding ancillary ligands, improving the overall rate of ligand metallation. Carbonyl complexes of the type [(PCP)M(CO)]+ were synthesised from the pincer chloride complexes by halide abstraction, and displayed large ν(C?O) values, from 2170–2111 cm?1, confirming the electron‐poor nature of the compounds. The [(PCP)Pd(CO)]+ complexes also demonstrated the ability to reversibly bind carbon monoxide both in solution and the solid state, with the rate of decarbonylation increasing with increasing wavenumber for the C?O stretch.  相似文献   

20.
The gas-phase electron diffraction (GED) experiment at the Moscow State University was carried out for the first time using imaging plates (IPs). The response of the Fuji BAS-MP IPs calibrated by means of 14C standard sources was found to be linear in a broad dynamic interval (larger than 104). The GED study of tetrachloromethane was carried out in order to test the applied technique (IP reader FLA7000) and the developed software. The determined structural parameters of the CCl4 molecule are in excellent agreement with those obtained in experiments with photographic registration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号