首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Graphene nanosheets were produced on the surface of carbon fibers by in situ electrochemical procedure including oxidative and reductive steps to yield first graphene oxide, later converted to graphene. The electrode material composed of graphene‐functionalized carbon fibers was characterized by scanning electron microscopy (SEM) and cyclic voltammery demonstrating superior electrochemical kinetics comparing with the original carbon paper. The interfacial electron transfer rate for the reversible redox process of [Fe(CN)6]3?/4? was found ca. 4.5‐fold higher after the electrode modification with the graphene nanosheets. The novel electrode material is suggested as a promising conducting interface for bioelectrocatalytic electrodes used in various electrochemical biosensors and biofuel cells, particularly operating in vivo.  相似文献   

2.
A new nanostructured graphene/TiO2 (G/TiO2) hybrid was synthesized by a facile microwave‐assisted solvothermal process in which amorphous TiO2 was assembled on graphene in situ. The resulting G/TiO2 hybrids were characterized by XRD, SEM, TEM, Raman spectroscopy, and N2 adsorption/desorption analysis. The electrochemical properties of the hybrids as anode materials for Shewanella‐inoculated microbial fuel cells (MFCs) were studied for the first time, and they proved to be effective in improving MFC performance. The significantly improved bacterial attachment and extracellular electron‐transfer efficiency could be attributed to the high specific surface area, active groups, large pore volume, and excellent conductivity of the nanostructured G/TiO2 hybrid, and this suggests that it could be a promising candidate for high‐performance MFCs.  相似文献   

3.
C‐type cytochromes located on the outer membrane (OMCs) of genus Shewanella act as the main redox‐active species to mediate extracellular electron transfer (EET) from the inside of the outer membrane to the external environment: the central challenge that must be met for successful EET. The redox states of OMCs play a crucial role in dictating the rate and extent of EET. Here, we report that the surface wettability of the electrodes strongly influences the EET activity of living organisms of Shewanella loihica PV‐4 at a fixed external potential: the EET activity on a hydrophilic electrode is more than five times higher than that on a hydrophobic one. We propose that the redox state of OMCs varies significantly at electrodes with different wettability, resulting in different EET activities.  相似文献   

4.
《化学:亚洲杂志》2017,12(3):308-313
The enhancement of microbial activity and electrocatalysis through the design of new anode materials is essential to develop microbial fuel cells (MFCs) with longer lifetimes and higher output. In this research, a novel anode material, graphene/Fe3O4 (G/Fe3O4) composite, has been designed for Shewanella ‐inoculated MFCs. Because the Shewanella species could bind to Fe3O4 with high affinity and their growth could be supported by Fe3O4, the bacterial cells attached quickly onto the anode surface and their long‐term activity improved. As a result, MFCs with reduced startup time and improved stability were obtained. Additionally, the introduction of graphene not only provided a large surface area for bacterial attachment, but also offered high electrical conductivity to facilitate extracellular electron transfer (EET). The results showed that the current and power densities of a G/Fe3O4 anode were much higher than those of each individual component as an anode.  相似文献   

5.
A screening method using α‐amylase‐functionalized magnetic graphene oxide combined with high‐speed counter‐current chromatography was proposed and utilized to screen and separate α‐amylase inhibitors from extract of Solanum nigrum . The α‐amylase‐functionalized magnetic graphene oxide was characterized and found to demonstrate satisfactory structure, magnetic response (24.5 emu/g), and reusability (retained 90% of initial activity after five cycles). The conditions for the screening with α‐amylase functionalized magnetic graphene oxide were optimized and set at pH 7.0 and 25°C. As a result, two potent flavonoid compounds, apigenin‐7‐O‐glucuronide ( 1 ) and astragalin ( 2 ), were separated and collected through high‐speed counter‐current chromatography and subjected to high‐performance liquid chromatography analysis with purity higher than 90% (according to HPLC data), which were identified as α‐amylase inhibitors. These results suggested that utilization of α‐amylase functionalized magnetic graphene oxide in the rapid screening and isolation bioactive compounds from complex natural products is a feasible and environmentally friendly method.  相似文献   

6.
Nanostructure engineering has been demonstrated to improve the electrochemical performance of iron oxide based electrodes in Li‐ion batteries (LIBs). However, the synthesis of advanced functional materials often requires multiple steps. Herein, we present a facile one‐pot synthesis of carbon‐coated nanostructured iron oxide on few‐layer graphene through high‐pressure pyrolysis of ferrocene in the presence of pristine graphene. The ferrocene precursor supplies both iron and carbon to form the carbon‐coated iron oxide, while the graphene acts as a high‐surface‐area anchor to achieve small metal oxide nanoparticles. When evaluated as a negative‐electrode material for LIBs, our composite showed improved electrochemical performance compared to commercial iron oxide nanopowders, especially at fast charge/discharge rates.  相似文献   

7.
Graphene nanosheets offer intriguing electronic, thermal, and mechanical properties and are expected to find a variety of applications in high‐performance nanocomposite materials. Dispersal of graphene nanosheets in polymer hosts and precise interface control are challenging due to their strong interlayer cohesive energy and surface inertia. Here, an efficient strategy is presented for growing polymers directly from the surface of reduced graphene oxide (GO). This method involves the covalent attachment of Br‐containing initiating groups onto the surface of hydrazine hydrate reduced GO via a diazonium addition and the succeeding linking of poly(tert‐butyl methacrylate) (PtBMA) chains (71.7 wt % grafting efficiency) via surface‐initiated single‐electron‐transfer living radical polymerization (SET‐LRP) to graphene nanosheets. The resulting materials were characterized by using a range of testing techniques and it was proved that polymer chains were successfully introduced to the surface of exfoliated graphene sheets. After grafting with PtBMA, the modified graphene sheets still maintained the separated single layers, and the dispersibility was improved significantly. The method is believed to offer possibilities for optimizing the processing properties and interface structure of graphene–polymer nanocomposites. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

8.
A nanocomposite gel with a uniform porous structure and well‐controlled compositions prepared by mixing three‐dimensional graphene material with an ionic liquid, 1‐butyl‐3‐methylimidazolium hexafluorophosphate, is used for nitric oxide detection. It shows a fast response of less than 4 seconds, an excellent sensitivity of 11.2 µA cm−2 (µmol/L)−1 and an extremely low detection limit of 16 nM with a signal‐to‐noise ratio of 3 (S/N=3), a performance superior to that of reported works based on carbon nanotubes and nanoparticles. The high sensitivity is attributed to the large electroactive surface area of the graphene gel nanocomposite towards nitric oxide oxidation. The electrochemical behavior of the gel nanocomposite is investigated and explained.  相似文献   

9.
《Electroanalysis》2005,17(23):2163-2169
A thiol‐specific electroactive cross‐linker, N‐(2‐ethyl‐ferrocene)maleimide (Fc‐Mi), has been used to tag surface‐confined peptides containing cysteine residues or oligodeoxynucleotides (ODNs) whose 3′ ends have been modified with thiol groups. The peptides studied herein include both the oxidized and reduced forms of glutathione and a hexapeptide. Cyclic voltammograms (CVs) of the Fc‐Mi groups attached to the surfaces were used to quantify the total number of cysteine residues that are tagged and/or can undergo facile electron transfer reactions with the underlying electrodes. A quartz crystal microbalance was used in conjunction with CV to estimate the total number of cysteine groups labeled by Fc‐Mi per peptide molecule. By comparing to mass spectrometric studies, it is confirmed that not all of the Fc‐Mi linked to the cysteine groups can participate in the electron transfer reactions. The methodology is further extended to the determination of ODN samples in a sandwich assay wherein the thiol linker on the 3′ end can be tagged with Fc‐Mi. The analytical performance was evaluated through determinations of a complementary ODN target and targets with varying numbers of mismatching bases. ODN samples as low as 10 fmol can be detected. Such a low detection level is remarkable considering that no signal amplification scheme is involved in the current method. The approach is shown to be sequence‐ and/or structure‐specific and does not require sophisticated instrumentation and complex experimental procedure.  相似文献   

10.
The assembly of redox proteins on electrodes is an important step in biosensor development. Recently, p‐sulfonato‐calix[4]arene was shown to act as “molecular glue” for the assembly and crystallization of cytochrome c (cyt c). Electrochemical data are presented for microscale cyt c–calixarene crystals grown on self‐assembled monolayers (SAM)‐modified Au electrodes. The crystals were characterized by cyclic voltammetry and exceptionally high concentrations of electroactive cyt c were obtained. The peak currents were found to increase linearly with the square root of the scan rate, thus allowing an evaluation of the rate constant for electron self‐exchange. This study revealed high electroactivity accompanied by fast interprotein electron transfer in crystals, which may have implications for the construction of novel bioelectronic devices.  相似文献   

11.
Reduced graphene oxide (RGO) was covalently functionalized by the in situ generation and reduction of anthraquinone diazonium salt. Deposition on multi‐wall carbon nanotube (MWCNT) electrodes prevents the aggregation of RGO nanosheets and allows the stable deposition of modified graphene, accompanied with excellent electron transfer properties. Laccases were immobilized on the nanostructured electrode by the interaction between the anthraquinone moiety and the laccase hydrophobic pocket located near the T1 copper center. The MWCNT/f‐RGO electrode exhibits efficient bioelectrocatalytic oxygen reduction, with current densities of up to 0.9 mA cm?2.  相似文献   

12.
Using highly soluble bromo‐functionalized reduced graphene oxide (RGBr) as a key graphene template for surface‐directing Sonogashira–Hagihara polymerization, a novel soluble poly(arylene‐ethynylene)‐grafted reduced graphene oxide, hereafter abbreviated as PAE‐g‐RGO, was prepared in situ. The entirely different electron distribution of LUMO and HOMO of PAE‐g‐RGO suggested the existence of a charge‐transfer (CT) state (PAE.?–RGO.+). The negative ΔGCS value (?2.57 eV) indicates that the occurrence of the charge separation via 1RGO* in o‐DCB is exothermic and favorable. Upon irradiation with 365 nm light, the light‐induced electron paramagnetic resonance (LEPR) spectrum of PAE‐g‐RGO showed a decrease in the spin‐state density owing to photoinduced intramolecular electron transfer events in this system. A sandwich‐type Al/PAE‐g‐RGO/ITO device showed representative bistable electrical switching behavior. The nonvolatile memory performance was attributed to the CT‐induced conductance changes, which was supported by molecular computation results and conductive atomic force microscopy (C‐AFM) images.  相似文献   

13.
Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m?2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.  相似文献   

14.
Single‐walled carbon nanotubes (SWCNTs) deposits on glassy carbon and pyrolytic graphite electrodes have dramatically enhanced the direct electron transfer of the multihemic nitrite reductase from Desulfovibrio desulfuricans ATCC 27774, enabling a 10‐fold increase in catalytic currents. At optimal conditions, the sensitivity to nitrite and the maximum current density were 2.4±0.1 A L mol?1 cm?2 and 1500 µA cm?2, respectively. Since the biosensor performance decreased over time, laponite clay and electropolymerized amphiphilic pyrrole were tested as protecting layers. Both coating materials increased substantially the bioelectrode stability, which kept about 90 % and 60 % of its initial sensitivity to nitrite after 20 and 248 days, respectively.  相似文献   

15.
High electrochemical reactivity is required for various energy and sensing applications of graphene grown by chemical vapor deposition (CVD). Herein, we report that heterogeneous electron transfer can be remarkably fast at CVD‐grown graphene electrodes that are fabricated without using the conventional poly(methyl methacrylate) (PMMA) for graphene transfer from a growth substrate. We use nanogap voltammetry based on scanning electrochemical microscopy to obtain very high standard rate constants k0≥25 cm s?1 for ferrocenemethanol oxidation at polystyrene‐supported graphene. The rate constants are at least 2–3 orders of magnitude higher than those at PMMA‐transferred graphene, which demonstrates an anomalously weak dependence of electron‐transfer rates on the potential. Slow kinetics at PMMA‐transferred graphene is attributed to the presence of residual PMMA. This unprecedentedly high reactivity of PMMA‐free CVD‐grown graphene electrodes is fundamentally and practically important.  相似文献   

16.
An analytical protocol that includes solid‐phase purification and extraction is successfully developed for the determination of trace neonicotinoid pesticides in tea infusion. The method consists of a purification on amino‐functionalized mesoporous silica SBA‐15 followed by a solid‐phase extraction based on graphene oxide before ultra high performance liquid chromatography with tandem mass spectrometry analysis. Parameters that significantly affected the extraction of the neonicotinoids onto graphene oxide, such as the amount of adsorbent, extraction time, pH, elution solvent, etc. were optimized. The amino‐functionalized mesoporous silica SBA‐15 has been proved to be an efficient adsorbent for removal of polyphenols especially catechins from tea infusion. Graphene oxide exhibits a very rapid adsorption rate (within 10 min) and high adsorption capacities for neonicotinoids at low initial concentration (0.01–0.5 mg/L). The analysis method gave a good determination coefficient (r2 > 0.99) for each pesticide and high recoveries in the range of 72.2–95.0%. Powder X‐ray diffraction, Raman spectroscopy, transmission electron microscopy, and UV‐vis spectroscopy were utilized to identify the structure and morphology of graphene oxide. The adsorption driving force of neonicotinoids on graphene oxide mainly depends on π–π electron donor–acceptor interaction and electrostatic interaction.  相似文献   

17.
In this study, N,P co‐doped graphene (NPG) was prepared by a one‐step pyrolysis using a mixture of graphene oxide and hexachlorocyclotriphosphazene (HCCP), in which HCCP was used as both the N and P source. Furthermore, it is shown that NPG electrodes, as efficient metal‐free electrocatalysts, have a high onset potential, high current density, and long‐term stability for the oxygen reduction reaction.  相似文献   

18.
In this work three different carbon allotropes: multi‐walled carbon nanotubes (MWCNT), graphene and carbon nanohorns (CNH) were covalently bound with in‐situ generated 3‐diazonium aryl chlorides. These species were attached to the carbon surface using an electrochemically‐initiated radical coupling, similar to the Gomberg‐Bachman type reaction. An electrochemical grafting of the extended π‐systems at the carbon surface was performed in aqueous media in a simple 3‐electrode system and its kinetics was investigated by a modified Butler‐Volmer approach. The analysis of Hammett constants demonstrated a strong influence of the type of electron donating‐/withdrawing substituents on the reduction potential peak position and the peak current. Moderately or strong electron withdrawing groups like ‐carboxy or ‐nitro tend to shift reduction potential towards more positive values, which facilitates an electron uptake. The deposition time varies for different carbon allotropes and depends on the carbon graphitization and the surface area. The best surface coverage was obtained at 90–150 sec of the deposition. Although, the surface functionalities are less conductive than the carbon, the electrodes showed a low internal resistance and thus a high rate of electron transfer (high exchange current density and the electron transfer rate constant), with the most promising observed for carbon nanohorns. The best performing carbon revealed also superior mass transport of the redox active species toward the electrode surface, owing to their unique particle shapes and its very porous structure. The Tafel analysis complemented by an impedance spectroscopy allowed selecting the best carbon substrate for the functionalization with a 3‐aminobenzoic acid.  相似文献   

19.
In order to explore the effect of graphene surface chemistry on electrochemical performance based on polyaniline–graphene hybrid material electrodes, four different polyaniline–graphene nanocomposites were fabricated with graphene oxide, reduced graphene oxide, aminated graphene and sulfonated graphene as carriers, respectively. The nanocomposites feature various structures and morphologies, which could be used to more deeply understand the morphology and structure effects caused by surface chemistry on electrochemical performance. The experimental results reveal that functionalized electronegative graphene was conducive to the vertical and neat growth of polyaniline (PANI) nanorods. The array architecture endowed the PANI–GS nanocomposite with a large ion‐accessible surface area and high‐efficiency electron‐ and ion‐transport pathways. Meanwhile, the introduction of sulfonic acid functional groups accelerated the redox reaction with doping and dedoping of the PANI. Thereby, the PANI–GS nanocomposite exhibited a high specific capacitance of 863.2 F g?1 at a current density of 0.2 A g?1 and the excellent rate capability of 67.4 % (581.6 F g?1 at 5 A g?1), which were much better than the other three nanocomposites produced.  相似文献   

20.
This article has been devoted to investigation of the tribological properties of ultra‐high molecular polyethylene/graphene oxide nanocomposite. The nanocomposite of ultra‐high molecular polyethylene/graphene oxide was prepared with 0.5, 1.5, and 2.5 wt% of graphene oxide and with a molecular weight of 3.7 × 106 by in‐situ polymerization using Ziegler–Natta catalyst. In this method, graphene oxide was used along with magnesium ethoxide as a novel bi‐support of the Ziegler–Natta catalyst. Analyzing the pin‐on‐disk test, the tribological properties of the nanocomposite, such as wear rate and mean friction coefficient, were investigated under the mentioned contents of graphene oxide. The results showed that an increase in graphene oxide content causes a reduction in both wear rate and mean coefficient friction. For instance, by adding only 5 wt% graphene oxide to the polymeric matrix, the wear rate and mean coefficient friction decreased about 34% and 3.8%, respectively. Also, the morphological properties of the nanocomposite were investigated by using X‐ray diffraction and scanning electron microscopy. In addition, thermal properties of the nanocomposite were analyzed using differential scanning calorimetry, under various contents of graphene oxide. The results of the morphological test indicated that the graphene oxide was completely exfoliated into the polymeric matrix without any agglomeration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号