首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present here a novel camptothecin (CPT) prodrug based on polyethylene glycol monomethyl ether‐block‐poly(2‐methacryl ester hydroxyethyl disulfide‐graft‐CPT) (MPEG‐SS‐PCPT). It formed biocompatible nanoparticles (NPs) with diameters of approximately 122 nm with a CPT loading content as high as approximately 25 wt % in aqueous solution. In in vitro release studies, these MPEG‐SS‐PCPT NPs could undergo triggered disassembly and much faster release of CPT under glutathione (GSH) stimulus than in the absence of GSH. The CPT prodrug had high antitumor activity, and another anticancer drug, doxorubicin hydrochloride (DOX ? HCl), could also be introduced into the prodrug with a high loading amount. The DOX ? HCl‐loaded CPT prodrug could deliver two anticancer drugs at the same time to produce a collaborative cytotoxicity toward cancer cells, which suggested that this GSH‐responsive NP system might become a promising carrier to improve drug‐delivery efficacy.  相似文献   

2.
In order to limit the side effects associated with antitumor drugs such as doxorubicin, nanosized drug‐delivery systems capable of selectively delivering and releasing the drug in the diseased tissue are required. We describe nanoparticles (NPs), self‐assembled from a reduction responsive amphiphilic peptide, capable of entrapping high amounts of a redox active anticancer drug candidate and releasing it in presence of a reducing agent. This system shows a high entrapment efficiency with up to 15 mg drug per gram of peptide (5.8 mol‐%). Treatment of the NPs with reducing agent results in the disassembly of the NPs and release of the drug molecules. A reduction in cell viability is observed at drug concentrations above 250 nm in HEK293T and HeLa cell lines. This drug delivery system has potential for targeting tumor sites via the EPR effect while taking advantage of the increased reduction potential in tumor microenvironment.  相似文献   

3.
A novel kind of graft polymer poly(aspartic acid)‐ethanediamine‐g‐adamantane/methyloxy polyethylene glycol (Pasp‐EDA‐g‐Ad/mPEG) was designed and synthesized for drug delivery in this study. The chemical structure of the prepared polymer was confirmed by proton NMR. The obtained polymer can self‐assemble into micelles which were stable under a physiological environment and displayed pH‐ and β‐cyclodextrin (β‐CD)‐responsive behaviors because of the acid‐labile benzoic imine linkage and hydrophobic adamantine groups in the side chains of the polymer. The doxorubicin (Dox)‐loaded micelles showed a slow release under physiological conditions and a rapid release after exposure to weakly acidic or β‐CD environment. The in vitro cytotoxicity results suggested that the polymer was good at biocompatibility and could remain Dox biologically active. Hence, the Pasp‐EDA‐g‐Ad/mPEG micelles may be applied as promising controlled drug delivery system for hydrophobic antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1387–1395  相似文献   

4.
In this work, a novel type of block copolymer micelles with K+‐responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self‐assembly of poly(ethylene glycol)‐b‐poly(N‐isopropylacry‐lamide‐co‐benzo‐18‐crown‐6‐acrylamide) (PEG‐b‐P(NIPAM‐co‐B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA‐loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10−3m , as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC‐T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+‐induced intracellular release. Such K+‐responsive block copolymer micelles are highly potential as new‐generation of smart nanocarriers for targeted intracellular delivery of drugs.  相似文献   

5.
Human ferritins are emerging platforms for non‐toxic protein‐based drug delivery, owing to their intrinsic or acquirable targeting abilities to cancer cells and hollow cage structures for drug loading. However, reliable strategies for high‐level drug encapsulation within ferritin cavities and prompt cellular drug release are still lacking. Ferritin nanocages were developed with partially opened hydrophobic channels, which provide stable routes for spontaneous and highly accumulated loading of FeII‐conjugated drugs as well as pH‐responsive rapid drug release at endoplasmic pH. Multiple cancer‐related compounds, such as doxorubicin, curcumin, and quercetin, were actively and heavily loaded onto the prepared nicked ferritin. Drugs on these minimally modified ferritins were effectively delivered inside cancer cells with high toxicity.  相似文献   

6.
Novel pH and reduction dual‐sensitive biodegradable polymeric micelles for efficient intracellular delivery of anticancer drugs were prepared based on a block copolymer of methyloxy‐poly(ethylene glycol)‐b‐poly[(benzyl‐l ‐aspartate)‐co‐(N‐(3‐aminopropyl) imidazole‐l ‐aspartamide)] [mPEG‐SS‐P(BLA‐co‐APILA), MPBA] synthesized by a combination of ring‐opening polymerization and side‐chain reaction. The pH/reduction‐responsive behavior of MPBA was observed by both dynamic light scattering and UV–vis experiments. The polymeric micelles and DOX‐loaded micelles could be prepared simply by adjusting the pH of the polymer solution without the use of any organic solvents. The drug release study indicated that the DOX‐loaded micelles showed retarded drug release in phosphate‐buffered saline at pH 7.4 and a rapid release after exposure to weakly acidic or reductive environment. The empty micelles were nontoxic and the DOX‐loaded micelles displayed obvious anticancer activity similar to free DOX against HeLa cells. Confocal microscopy observation demonstrated that the DOX‐loaded MPBA micelles can be quickly internalized into the cells, and effectively deliver the drugs into nuclei. Thus, the pH and reduction dual‐responsive MPBA polymeric micelles are an attractive platform to achieve the fast intracellular release of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1771–1780  相似文献   

7.
Near‐infrared light (NIR) possesses great advantages for light‐responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR‐responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)‐loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)‐block‐poly(furfuryl methacrylate) (POEGMA‐b‐PFMA), are synthesized by sequential reversible addition‐fragmentation chain‐transfer (RAFT) polymerization, followed by modification with N‐octyl maleimide through Diels–Alder (DA) reaction to produce POEGMA‐b‐POMFMA. The self‐assembly of POEGMA‐b‐POMFMA by nano­precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase‐induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR‐triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation.

  相似文献   


8.
Self‐assembled thermo‐ and pH‐responsive poly(acrylic acid)‐b‐poly(N‐isopropylacrylamide) (PAA‐b‐PNIPAM) micelles for entrapment and release of doxorubicin (DOX) was described. Block copolymer PAA‐b‐PNIPAM associated into core‐shell micelles in aqueous solution with collapsed PNIPAM block or protonated PAA block as the core on changing temperature or pH. Complexation of DOX with PAA‐b‐PNIPAM triggered by the electrostatic interaction and release of DOX from the complexes due to the changing of pH or temperature were studied. Complex micelles incorporated with DOX exhibited pH‐responsive and thermoresponsive drug release profile. The release of DOX from micelles was suppressed at pH 7.2 and accelerated at pH 4.0 due to the protonation of carboxyl groups. Furthermore, the cumulative release of DOX from complex micelles was enhanced around LCST ascribed to the structure deformation of the micelles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5028–5035, 2008  相似文献   

9.
Herein, the synthesis and potential application as cargo delivery systems of thermo‐responsive poly(N‐vinylcaprolactam) (PVCL)‐based, pH‐responsive poly(2‐(diethylamino)ethyl) methacrylate (PDEAEMA)‐based, and thermo‐, and pH‐responsive PDEAEMA/PVCL‐based core–shell nanogels are reported. All the nanogels have been synthesized using different dextran‐methacrylates (Dex‐MAs) as macro‐cross‐linkers. Doxorubicin hydrochloride (DOXO), an anticancer drug, has been effectively loaded into nanogels via hydrogen‐bonding interactions between ? OH groups of DOXO and ? OH groups of Dex‐MA chains. Drug‐release profiles at various pHs, and the cytocompatibility of the DOXO‐loaded nanogels have been assessed in vitro using cervical cancer HeLa and breast cancer MDA‐MB‐231 cell lines. In all the cases, the DOXO release is controlled by Fickian diffusion and case‐II transport, being the diffusional process dominant. In addition, DOXO‐loaded nanogels are efficiently internalized by HeLa and MDA‐MB‐231 cells and DOXO is progressively released in time. Therefore, nanogels synthesized could be suitable and potentially useful as nanocarriers for antitumor drug delivery. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1694–1705  相似文献   

10.
A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co‐delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as‐prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI‐FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI‐FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co‐delivery system to selectively bind with and enter into the target cancer cells. PEI‐FA‐coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI‐FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH‐controlled release. In vitro pH‐responsive drug/siRNA co‐delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF‐7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH‐responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl‐2 protein into the HeLa cells, the expression of the anti‐apoptotic protein Bcl‐2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and targeted drug and gene co‐delivery in cancer treatment.  相似文献   

11.
This study focuses on the development of a new electric field responsive graphene oxide (GO) nanoparticle system for on-demand drug delivery. Today, GO is an attractive option adopted in various biological applications for its exclusive features such as flexibility, conductiveness, cost-effectiveness, and external stimuli-responsive nature. It is usual to utilize multiple drugs in cancer treatment. This kind of therapy has lesser side-effects, drug resistance, and is more effective than utilizing only one drug. This study aims to determine low-voltage-controlled dual drug (aspirin and doxorubicin) release from GO surface. Here, we have demonstrated how to control the drug release rate remotely with a handy mobile phone, with zero passive release at idle time. In addition, the study focused to estimate the synergism of aspirin with doxorubicin in the release mechanism from GO in the presence of external voltage, using the spectroscopic method. Moreover, we observed aspirin- and doxorubicin-induced synergistic antitumor activity in MDA-MB 231 (breast cancer cell) in vitro. Thus, our study presents a noble combination of aspirin and doxorubicin that could be utilized for remotely controlled on-demand drug delivery for triple negative breast cancer treatment, using GO as a carrier.  相似文献   

12.
《中国化学》2018,36(6):481-486
Targeted drug delivery has been widely explored for efficient tumor therapy with desired efficacy but minimized side effects. It is widely known that large numbers of DNA‐toxins, such as doxorubicin, genes, reactive oxygen species, serving as therapeutic agents, can result in maximized therapeutic effects via the interaction directly with DNA helix. So after cellular uptake, these agents should be further delivered into cell nuclei to play their essential roles in damaging the DNA helix in cancer cells. Here, we demonstrate the first paradigm established in our laboratory in developing nuclear‐targeted drug delivery systems (DDSs) based on MSNs for enhanced therapeutic efficiency in the hope of speeding their translation into the clinics. Firstly, nuclear‐targeting DDSs based on MSNs, capable of intranuclear accumulation and drug release therein, were designed and constructed for the first time, resulting in much enhanced anticancer effects both in vitro and in vivo. Such an MSNs‐based and nuclear‐targeted drug/agent delivery strategy was further applied to overcome multidrug resistance (MDR) of malignant tumors, intra‐nuclearly deliver therapeutic genes, photosensitizers, radio‐enhancement agents and photothermal agents to realize efficient gene therapy, photodynamic therapy, radiation therapy and photothermal therapy, respectively.  相似文献   

13.
A facile approach to synthesis of ABCDE‐type H‐shaped quintopolymer comprising polystyrene (PSt, C) main chain and poly(ethylene glycol) (PEG, A), poly(ε‐caprolactone) (PCL, B), poly(L ‐lactide) (PLLA, D), and poly(acrylic acid) (PAA, E) side chains was described, and physicochemical properties and potential applications as drug carriers of copolymers obtained were investigated. Azide‐alkyne cycloaddition reaction and hydrolysis were used to synthesize well‐defined H‐shaped quintopolymer. Cytotoxicity studies revealed H‐shaped copolymer aggregates were nontoxic and biocompatible, and drug loading and release properties were affected by macromolecular architecture, chemical composition, and pH value. The release rate of doxorubicin from copolymer aggregates at pH 7.4 was decreased in the order PAA‐b‐PLLA > H‐shaped copolymer > PEG‐PCL‐PSt star, and the release kinetics at lower pH was faster. The H‐shaped copolymer aggregates have a potential as controlled delivery vehicles due to their excellent storage stability, satisfactory drug loading capacity, and pH‐sensitive release rate of doxorubicin. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
In many biomedical applications, drugs need to be delivered in response to the pH value in the body. In fact, it is desirable if the drugs can be administered in a controlled manner that precisely matches physiological needs at targeted sites and at predetermined release rates for predefined periods of time. Different organs, tissues, and cellular compartments have different pH values, which makes the pH value a suitable stimulus for controlled drug release. pH‐Responsive drug‐delivery systems have attracted more and more interest as “smart” drug‐delivery systems for overcoming the shortcomings of conventional drug formulations because they are able to deliver drugs in a controlled manner at a specific site and time, which results in high therapeutic efficacy. This focus review is not intended to offer a comprehensive review on the research devoted to pH‐responsive drug‐delivery systems; instead, it presents some recent progress obtained for pH‐responsive drug‐delivery systems and future perspectives. There are a large number of publications available on this topic, but only a selection of examples will be discussed.  相似文献   

15.
Although stimuli‐responsive materials hold potential for use as drug‐delivery carriers for treating cancers, their clinical translation has been limited. Ideally, materials used for the purpose should be biocompatible and nontoxic, provide “on‐demand” drug release in response to internal or external stimuli, allow large‐scale manufacturing, and exhibit intrinsic anticancer efficacy. We present multistimuli‐responsive nanoparticles formed from bilirubin, a potent endogenous antioxidant that possesses intrinsic anticancer and anti‐inflammatory activity. Exposure of the bilirubin nanoparticles (BRNPs) to either reactive oxygen species (ROS) or external laser light causes rapid disruption of the BRNP nanostructure as a result of a switch in bilirubin solubility, thereby releasing encapsulated drugs. In a xenograft tumor model, BRNPs loaded with the anticancer drug doxorubicin (DOX@BRNPs), when combined with laser irradiation of 650 nm, significantly inhibited tumor growth. This study suggests that BRNPs may be used as a drug‐delivery carrier as well as a companion medicine for effectively treating cancers.  相似文献   

16.
Porous polymer microspheres (PPMs) have been widely applied in various biomedical fields. Herein, the self‐assisted preparation of poly(ester‐thioether)‐based porous microspheres and hierarchical microcages, whose pore sizes can be controlled by varying the polymer structures, is reported. Poly(ester‐thioether)s with alkyl side chains (carbon atom numbers were 2, 4, and 8) can generate hollow porous microspheres; the longer alkyl chain length, the larger pore size of microspheres. The allyl‐modified poly(ester‐thioether) (PHBDT‐g‐C3) can form highly open, hierarchically interconnected microcages. A formation mechanism of these PPMs is proposed; the hydrophobic side chains‐mediated stabilization of oil droplets dictate the droplet aggregation and following solvent evaporation, which is the key to the formation of PPMs. The hierarchically interconnected microcages of PHBDT‐g‐C3 are due to the partially crosslinking of polymers. Pore sizes of PPMs can be further tuned by a simple mixing strategy of poly(ester‐thioether)s with different pore‐forming abilities. The potential application of these PPMs as H2O2‐responsive vehicles for delivery of hydrophobic (Nile Red) and hydrophilic (doxorubicin hydrochloride) cargos is also investigated. The microspheres with larger pore sizes show faster in vitro drug release. The poly(ester‐thioether)‐based polymer microspheres can open a new avenue for the design of PPMs and provide a H2O2‐responsive drug delivery platform.  相似文献   

17.
A hybrid composite made up of superparamagnetic iron oxide nanoshells encapsulating the anticancer drug doxorubicin and bound together by poly(vinyl alcohol) was developed. Transcatheter arterial delivery in an in vivo liver tumor model led to embolization of the liver tumor blood vessels. Embolization was followed by disassembly of the composite. The nanoshells were then able to pass through the leaky tumor vasculature into the tumor tissue, thereby leading to slow and sustained release of the drug. As well as being relatively noncytotoxic, the composite was responsive to magnetic resonance imaging, thus making it a potentially useful theranostic agent.  相似文献   

18.
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343  相似文献   

19.
Functionalized polymeric nanocarriers have been recognized as drug delivery platforms for delivering therapeutic concentrations of chemotherapies. Of this category, star‐shaped multiarm polymers are emerging candidates for targeted delivery of anticancer drugs, due to their compact structure, narrow size distribution, large surface area, and high water solubility. In this study, we synthesized a multiarm poly(acrylic acid) star polymer via macromolecular design via the interchange (MADIX)/reversible addition fragmentation chain transfer (MADIX/RAFT) polymerization and characterized it using nuclear magnetic resonance (NMR) and size exclusion chromatography. The poly(acrylic acid) star polymer demonstrated excellent water solubility and extremely low viscosity, making it highly suited for targeted drug delivery. Subsequently, we selected a hydrophilic drug, cisplatin, and a hydrophobic nitric oxide (NO)‐donating prodrug, O2‐(2,4‐dinitrophenyl) 1‐[4‐(2‐hydroxy)ethyl]‐3‐methylpiperazin‐1‐yl]diazen‐1‐ium‐1,2‐diolate, as two model compounds to evaluate the feasibility of using poly(acrylic acid) star polymers for the delivery of chemotherapeutics. After synthesizing and characterizing two poly(acrylic acid) star polymer‐based nanoconjugates, poly(acrylic acid)–cisplatin (acid–Pt) and poly(acrylic acid–NO (acid–NO) prodrug, the in vitro drug release kinetics of both the acid–Pt and the acid–NO were determined at physiological conditions. In summary, we have designed and evaluated a polymeric nanocarrier for sustained‐delivery of chemotherapies, either as a single treatment or a combination therapy regimen. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号