首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The herein reported visible‐light‐activated catalytic asymmetric [3+2] photocycloadditions between cyclopropanes and alkenes or alkynes provide access to chiral cyclopentanes and cyclopentenes, respectively, in 63–99 % yields and with excellent enantioselectivities of up to >99 % ee. The reactions are catalyzed by a single bis‐cyclometalated chiral‐at‐metal rhodium complex (2–8 mol %) which after coordination to the cyclopropane generates the visible‐light‐absorbing complex, lowers the reduction potential of the cyclopropane, and provides the asymmetric induction and overall stereocontrol. Enabled by a mild single‐electron‐transfer reduction of directly photoexcited catalyst/substrate complexes, the presented transformations expand the scope of catalytic asymmetric photocycloadditions to simple mono‐acceptor‐substituted cyclopropanes affording previously inaccessible chiral cyclopentane and cyclopentene derivatives.  相似文献   

2.
Polymer microsphere-supported chiral pyrrolidine catalysts were successfully synthesized by a precipitation polymerization incorporating a methacrylate monomer bearing chiral N-Boc-pyrrolidine moiety, followed by removal of the N-Boc groups. The resulting polymeric catalysts were applied to the asymmetric Michael addition reactions of aldehydes with alkyl vinyl ketones. The effects of the comonomer, the molar ratios within the catalyst, the catalyst loading, the temperature, and the solvent on the catalytic performance were investigated in detail. The reactions were found to proceed smoothly in the absence of a solvent. A hydrophobic polystyrene-based chiral pyrrolidine catalyst exhibited high reactivity (up to 97% yield) and enantioselectivity (up to 95% ee) during these reactions. The catalyst could also be recovered and reused up to five times without significant loss of activity.  相似文献   

3.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

4.
The asymmetric hydrogenation of pyrimidines proceeded with high enantioselectivity (up to 99 % ee) using an iridium catalyst composed of [IrCl(cod)]2, a ferrocene‐containing chiral diphosphine ligand (Josiphos), iodine, and Yb(OTf)3 (cod=1,5‐cyclooctadiene). The chiral catalyst converted various 4‐substituted pyrimidines into chiral 1,4,5,6‐tetrahydropyrimidines in high yield. The lanthanide triflate is crucial for achieving the high enantioselectivity as well as for activating the heteroarene substrate.  相似文献   

5.
A multicatalytic system consisting of tetrapropylammonium perruthenate/N‐methylmorpholine N‐oxide (TPAP/NMO) as oxidant, and diarylprolinol TMS‐ether as chiral amine catalyst, has been developed and applied in the efficient construction of valuable chiral molecules. The one‐pot domino reactions elaborated in the present study are based on the in situ generation of α,β‐unsaturated aldehydes from allylic alcohols and their subsequent use in various asymmetric transformations (e.g., cyclopropanation, Michael addition, Michael addition/acetalization). TPAP as a substrate‐selective redox catalyst is well tolerated by the amine catalyst and the domino reactions proceed in good yields and high enantioselectivities. The compatibility of metal and organocatalysis presented herein widens the scope of asymmetric iminium catalysis.  相似文献   

6.
Summary. The dirhodium(II)-catalyzed intermolecular cyclopropanation of a set of olefins with either diazo free phenyliodonium ylides or diazo compounds afforded cyclopropanes derived from Meldrum’s acid, dimethyl malonate, (silanoxyvinyl)diazoacetates, 3,3,3-trifluoro-2-diazopropionate, ethyl diazo(triethyl)- and (dimethylphenyl)silylacetate with moderate to high yield in either racemic or enantio-enriched forms. The intramolecular cyclopropanation of triethylsilyl-substituted allyl diazoacetates in the presence of the chiral rhodium(II) catalyst [Rh2(s-nttl)4] in toluene afforded the corresponding cyclopropanes with up to 37% ee. An efficient chiral separation method based on enantioselective GC and HPLC was developed. The method provides information about the chemical yields of the cyclopropane products, enantioselectivity, substrate specifity, and catalytic activity of the chiral catalysts used in the inter- and intramolecular cyclopropanation reactions and avoids time-consuming work-up procedures.  相似文献   

7.
Unprecedented organocatalyzed asymmetric cascade reactions have been developed for the facile synthesis of chiral spirooxindole‐based isotetronic acids and 5‐1H‐pyrrol‐2‐ones.The asymmetric 1,2‐addition reactions of α‐ketoesters to isatins and imines by using an acid–base bifunctional 6′‐OH cinchona alkaloid catalyst, followed by cyclization and enolization of the resulting adducts, gave chiral spiroisotetronic acids and 5‐1H‐pyrrol‐2‐ones, respectively, in excellent optical purities (up to 98 % ee). FT‐IR analysis supported the existence of hydrogen‐bonding interaction between the 6′‐OH group of the cinchona catalyst and an isatin carbonyl group, an interaction that might be crucial for catalyst activity and stereocontrol.  相似文献   

8.
Earth-abundant nickel, coordinated with a suitable chiral bisphosphine ligand, was found to be an efficient catalyst for the asymmetric hydrogenation of 2-amidoacrylates, affording the chiral α-amino acid esters in quantitative yields and excellent enantioselectivity (up to 96 % ee). The active catalyst component was studied by NMR and HRMS, which helped us to realize high catalytic efficiency on a gram scale with a low catalyst loading (S/C=2000). The hydrogenated products could be simply converted into chiral α-amino acids, β-amino alcohols, and their bioactive derivatives. Furthermore, the catalytic mechanism was investigated using deuterium-labeling experiments and computational calculations.  相似文献   

9.
An enantioselective ring‐closing C(sp3)?H amination of 2‐azidoacetamides is catalyzed by a chiral‐at‐metal ruthenium complex and provides chiral imidazolidin‐4‐ones in 31–95 % yield, with enantioselectivities of up to 95 % ee, and at catalyst loadings down to 0.1 mol % (turnover number (TON)=740). To our knowledge, this is the first example of a highly enantioselective C(sp3)?H amination with aliphatic azides. Mechanistic experiments reveal the importance of the amide group, which presumably enables initial bidentate coordination of the 2‐azidoacetamides to the catalyst. DFT calculations show that the transition state leading to the major enantiomer features a better steric fit and favorable π–π stacking between the substrate and the catalyst framework.  相似文献   

10.
《Tetrahedron: Asymmetry》2006,17(2):297-307
The enantio- and site-selectivity of the intramolecular C–H insertion reactions of acyclic N-arylalkyl, N-bis(trimethylsilyl)methyl α-diazoacetamides, and α-carboalkoxy-α-diazoacetamides 1ag, catalyzed by chiral Rh(II) carboxamidates and Rh(II) carboxylates were studied. In general, the reaction showed good to excellent chemoselectivity. Regioselectivity for most of the reactions was high, but was also found to be influenced by the structure of the diazo substrate and the chiral Rh(II) catalyst employed. The highest enantioselectivity for the reactions catalyzed by chiral Rh(II) carboxamidates was 69% and Rh2(4R-MEOX)4 was found to be the most effective. For the chiral Rh(II) carboxylate catalyzed reactions, the highest ee obtained was 75% and Rh2(S-PTTL)4 is the optimal catalyst. The method was applied toward the synthesis of a GABA analogue, (R)-β-benzyl-γ-aminobutyric acid.  相似文献   

11.
Palladium(II) and platinum(II) Lewis acid catalysts bearing BINAP have been proved to be water-tolerant in enantioselective carbonyl-ene reactions, thus arylglyoxal monohydrate could be used directly as substrate achieving good to excellent enantioselectivities as high as 95.4% e.e.. The enantioselective carbonyl-ene reactions using phenylglyoxal monohydrate as substrate with four alkenes including methylenecyclohexane, 2,3-dimethyl-1-butene, 2,4,4-trimethyl-1-pentene and alpha-methylstyrene, were investigated demonstrating comparable or even higher yields and enantioselectivities in comparison with the corresponding carbonyl-ene reactions using dry phenylglyoxal as substrate for both palladium(II)-BINAP catalyst and platinum(II)-BINAP catalyst. The palladium(II) and platinum(II)-BINAP catalyzed enantioselective carbonyl-ene reactions between 4-methylphenylglyoxal monohydrate and the four alkenes were also investigated affording enantioselectivities between 76.2% and 91.8% e.e.. A mechanism involving the coordination of arylglyoxal and 2,2-dihydroxy-1-phenylethanone with chiral catalyst was proposed to interpret the enantioselective carbonyl-ene reactions using arylglyoxal monohydrate as substrate.  相似文献   

12.
Rhodium‐catalyzed C(sp2)−H functionalization reactions of 4‐aryl‐5‐pyrazolones followed by [3+2] annulation reactions with alkynes provide rapid access to highly enantioenriched five‐membered‐ring 4‐spiro‐5‐pyrazolones. The use of a chiral SCpRh catalyst enabled the synthesis of a large range of spiropyrazolones with all‐carbon quaternary stereogenic centers in up to 99 % yield and 98 % ee from readily available substrates.  相似文献   

13.
Earth‐abundant nickel, coordinated with a suitable chiral bisphosphine ligand, was found to be an efficient catalyst for the asymmetric hydrogenation of 2‐amidoacrylates, affording the chiral α‐amino acid esters in quantitative yields and excellent enantioselectivity (up to 96 % ee). The active catalyst component was studied by NMR and HRMS, which helped us to realize high catalytic efficiency on a gram scale with a low catalyst loading (S/C=2000). The hydrogenated products could be simply converted into chiral α‐amino acids, β‐amino alcohols, and their bioactive derivatives. Furthermore, the catalytic mechanism was investigated using deuterium‐labeling experiments and computational calculations.  相似文献   

14.
A hybrid palladium catalyst assembled from a chiral phosphoric acid (CPA) and thioamide enables a highly efficient and enantioselective β‐C(sp3)?H functionalization of thioamides (up to 99 % yield, 97 % ee). A kinetic resolution of unsymmetrical thioamides by intermolecular C(sp3)?H arylation can be achieved with high s‐factors. Mechanistic investigations have revealed that stereocontrol is achieved by embedding the substrate in a robust chiral cavity defined by the bulky CPA and a neutral thioamide ligand.  相似文献   

15.
Chiral cyclopentyl β‐amino esters are formed catalytically by [3+2] cycloaddition reactions of enecarbamates with electrophilic metalloenolcarbenes in high yield with up to 98 % ee and excellent diastereocontrol. Use of β‐silyl‐substituted enoldiazoacetates with a chiral dirhodium catalyst and trans‐β‐arylvinylcarbamates are optimal for this transformation, which occurs with hydrogen‐bond association between the vinylcarbamate and the intermediate metalloenolcarbene. Reductive conversion of the protected amino esters forms highly functionalized cyclopentyl β‐amino acids and 3‐aminocyclopentanones.  相似文献   

16.
Highly diastereo- and enantioselective additions of substituted alpha-nitroesters to imines have been developed. High diastereoselection relies on the finding that the combination of chiral proton catalyst 2b and alpha-nitro aryl esters bearing 2,6-disubstitution combine to raise substrate-controlled diastereoselection to >20:1 in favor of the syn diastereomer. Furthermore, the chiral catalyst provides enantioselection to the 99% level through control of the addition step in which the azomethine pi-faces are differentiated. The bifunctional chiral protic acid catalyst enables these reactions to proceed without separate preactivation of either substrate, leading to a straightforward synthetic protocol for the formation of alpha,beta-diamino phenyl alanine derivatives.  相似文献   

17.
The rapid development of enantioselective C?H activation reactions has created a demand for new types of catalysts. Herein, we report the synthesis of a novel planar‐chiral rhodium catalyst [(C5H2tBu2CH2tBu)RhI2]2 in two steps from commercially available [(cod)RhCl]2 and tert‐butylacetylene. Pure enantiomers of the catalyst were obtained through separation of its diastereomeric adducts with natural (S)‐proline. The catalyst promoted enantioselective reactions of aryl hydroxamic acids with strained alkenes to give dihydroisoquinolones in high yields (up to 97 %) and with good stereoselectivity (up to 95 % ee).  相似文献   

18.
[reaction: see text] We have found the first example of high levels of asymmetric induction (97-74% ee) along with high diastereoselectivity (>99:1-64:36) in dipole-HOMO-/dipolarophile-LUMO-controlled asymmetric 1,3-dipolar cycloaddition reactions between fused azomethine imines and 3-acryloyl-2-oxazolidinone using a chiral BINIM-Ni(II) complex as a chiral Lewis acid catalyst.  相似文献   

19.
Six 2-quinolones, which bear a terminal alkene linked by a three- or four-membered tether to carbon atom C4 of the quinolone, were synthesized and subjected to an intramolecular [2 + 2]-photocycloaddition. The reaction delivered the respective products in high yields (78-99%) and with good regioselectivity in favor of the straight isomer. If conducted in the presence of a chiral hydrogen-bonding template (2.5 equiv) at low temperature in toluene as the solvent, the reaction proceeded enantioselectively (83-94% ee). An organocatalytic reaction was achieved when employing a chiral hydrogen-bonding template with an attached sensitizing unit (benzophenone or xanthone). The xanthone-based organocatalyst proved to be superior as compared to the respective benzophenone. Closer inspection revealed that the reaction of 4-(pent-4-enyloxy)quinolone leading to a six-membered ring, annelated to the cyclobutane, was less enantioselective (up to 41% ee with 30 mol % catalyst) than the reaction of 4-(but-3-enyloxy)quinolone leading to a five-membered ring (90% ee with 5 mol % and 94% ee with 20 mol % catalyst). Photophysical data (emission spectra, laser flash photolysis experiments) proved that the latter photocycloaddition was significantly faster, supporting the idea that the dissociation of the substrate from the catalyst prior to the photocycloaddition is responsible for the decreased enantioselectivity. Under optimized conditions, employing 10 mol % of the xanthone-based organocatalyst at -25 °C in trifluorotoluene as the solvent, three of the other four substrates gave the intramolecular [2 + 2]-photocycloaddition products with high enantioselectivities (72-87% ee). In all catalyzed reactions, the yields based on conversion were moderate to good (40-93%).  相似文献   

20.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号