首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Catalytic intermolecular hydroamination of vinyl arenes is described. Our initial investigation revealed that a Bi(OTf)3/[Cu(CH3CN)4]PF6 system previously developed for catalytic intermolecular hydroamination of 1,3‐dienes was suitable for hydroamination of a styrene with sulfonamides, but the substrate generality of this system was unsatisfactory. Several metals were screened to expand the substrate scope, and a new Hf(OTf)4/[Cu(CH3CN)4]PF6 system was determined to be highly suitable. The combination of Hf(OTf)4 and [Cu(CH3CN)4]PF6 efficiently promoted the hydroamination of various vinyl arenes, including less‐reactive vinyl arenes with electron‐withdrawing groups. This strategy was applied to sulfonamides, carbamates, and carboxamides, and products were obtained in up to 99 % yield with 0.3–10 mol % catalyst loading.  相似文献   

2.
Two iron–nitrosyl–porphyrins, nitrosyl[meso‐tetrakis(3,4,5‐trimethoxyphenylporphyrin]iron(II) acetic acid solvate ( 3 ) and nitrosyl[meso‐tetrakis(4‐methoxyphenylporphyrin]iron(II) CH2Cl2 solvate ( 4 ), were synthesized in quantitative yield by using a modified procedure with nitrous acid, followed by oxygen‐atom abstraction by triphenylphosphine under an argon atmosphere. These nitrosyl porphyrins are in the {FeNO}7 class. Under an argon atmosphere, these compounds are relatively stable over a broad range of pH values (4–8) but, under aerobic conditions, they release nitric oxide faster at high pH values than that at low pH values. The generated nitric‐oxide‐free iron(III)–porphyrin can be re‐nitrosylated by using nitrous acid and triphenylphosphine. The rapid release of NO from these FeII complexes at high pH values seems to be similar to that in nitrophorin, a nitric‐oxide‐transport protein, which formally possesses FeIII. However, because the release of NO occurs from ferrous–nitrosyl–porphyrin under aerobic conditions, these compounds are more closely related to nitrobindin, a recently discovered heme protein.  相似文献   

3.
A novel three‐dimensional ZnII complex, poly[aqua(μ4‐5‐carboxylato‐1‐carboxylatomethyl‐2‐oxidopyridinium)zinc(II)], [Zn(C8H5NO4)(H2O)]n, has been prepared by hydrothermal assembly of Zn(CH3COO)2·2H2O and 5‐carboxy‐1‐(carboxymethyl)pyridin‐1‐ium‐2‐olate (H2ccop). The ccop2− anions bridge the ZnII cations in a head‐to‐tail fashion via monodentate aromatic carboxylate and phenolate O atoms to form an extended zigzag chain which runs parallel to the [011] direction. One O atom of the aliphatic carboxylate group of the ccop2− ligand coordinates to the ZnII atom of a neighbouring chain thereby producing undulating layers which lie parallel to the (01) plane. A similar parallel undulating planar structure can be obtained if a path involving the other O atom of the aliphatic carboxylate group is considered. Thus, the aliphatic carboxylate group acts in a bridging bidentate mode to give extended –Zn–O–C–O–Zn– sequences running parallel to [001] which link the layers into an overall three‐dimensional framework. The three‐dimensional framework can be simplified as a 4‐connected sra topology with a Schläfli symbol of 42.63.8 if all the ZnII centres and ccop2− anions are regarded as tetrahedral 4‐connected nodes. The three‐dimensional luminescence spectrum was measured at room temperature with excitation and emission wavelengths of 344–354 and 360–630 nm, respectively, at intervals of 0.15 and 2 nm, respectively.  相似文献   

4.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

5.
Two coordination polymers based on 1, 6‐bis(2‐methyl‐imidazole‐1‐yl)‐hexane (bimh), namely {[Zn3(BTC)2(bimh)] · (bimh)}n ( 1 ) and {[Zn(IPA)(bimh)] · (CH3CH2OH)0.5}n ( 2 ) (H3BTC = trimesic acid, H2IPA = isophthalic acid), were synthesized through hydrothermal reactions. In compound 1 , the zinc(II) ions are bridged by BTC3– ligands to form an undulating infinite two‐dimensional (2D) polymeric network. The 3D networks of 1 show a twofold interpenetrating net. In compound 2 , zinc(II) ions are bridged by IPA2– ligands to form one‐dimensional (1D) helical structures. The 2D structures of 2 are further assembled into 3D networks through aromatic π–π stacking interactions. Both compounds exhibit strong photoluminescence at room temperature and may be good candidates for potential luminescence materials.  相似文献   

6.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

7.
Effects of self-coiling of organic molecules on intramolecular exciplex formation of compound I,in which the carbazole chromophore and terephthalic acid methylester acceptor group are linked by one (CH2)10 chain,and the decrease of the fluorescence intensities of compounds Ⅱ,Ⅲ,and Ⅳ,in which the carbazole chromophore and 3,5-dinitrobenzoate are connected by one aliphatic chain of (CH2)10 (Ⅱ),(CH2)12(Ⅲ),or (CH2)4(Ⅳ),have been studied in the dioxane (DX)-H2O binary system.The results show that self-coiling of organic molecules in DX-H2O facilitates intramolecular exciplex formation of I and induces the decrease of fluorescence intensities of Ⅱ,bacause of the proximity effect brought about by selfcoiling of organic molecules under hydrophobic-lipophilic interaction(HLI) between the excited carbazole chromophore and the acceptor.Since the similar effects are observed even when the concentration of the probes are less than their CAgCs(critical aggregate concentrations )in the DX-H2O mixture with the same φ values,formation of the intermolecular exciplex has been excluded.The effects are found to be strongly depended on φ values,indication that they are mainly driven by HLI.The properties of the acceptors can also affect the intramolecular exciplex formation.With terephthalic acid methylester moiety as the acceptor,the carbazole chromophore exhibits the fluorescence spectra of the exciplex,while with 3,5-dinitrobenzoate moiety as the acceptor,only the fluorescence spectra of excited carbazolyl chromophore are observed.  相似文献   

8.
1‐(β‐d ‐Erythrofuranosyl)cytidine, C8H11N3O4, (I), a derivative of β‐cytidine, (II), lacks an exocyclic hydroxy­methyl (–CH2OH) substituent at C4′ and crystallizes in a global conformation different from that observed for (II). In (I), the β‐d ‐erythrofuranosyl ring assumes an E3 conformation (C3′‐exo; S, i.e. south), and the N‐glycoside bond conformation is syn. In contrast, (II) contains a β‐d ‐ribofuranosyl ring in a 3T2 conformation (N, i.e. north) and an anti‐N‐glycoside linkage. These crystallographic properties mimic those found in aqueous solution by NMR with respect to furan­ose conformation. Removal of the –CH2OH group thus affects the global conformation of the aldofuranosyl ring. These results provide further support for S/syn–anti and N/anti correlations in pyrimidine nucleosides. The crystal structure of (I) was determined at 200 K.  相似文献   

9.
Iron is of interest as a catalyst because of its established use in the Haber–Bosch process and because of its high abundance and low toxicity. Nitrogen‐heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron–NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1′‐bis(pyridin‐2‐yl)‐2,2‐bi(1H‐imidazole)‐κN3][3,3′‐bis(pyridin‐2‐yl‐κN)‐1,1′‐methanediylbi(1H‐imidazol‐2‐yl‐κC2)](trimethylphosphane‐κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C—C‐coupled biimidazole, is trapped by coordination to still‐intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.  相似文献   

10.
Each of the title compounds, 8‐methoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane hemisolvate, [Pt(CH14B10O)(C18H15P)2]·0.5CH2Cl2, (I), 8‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (II), and 9‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (III), has an 11‐vertex nido polyhedral skeleton, with the 7‐platinum centre ligating to two exo‐polyhedral PPh3 groups and an alkoxy‐substituted polyhedral borane ligand. Compounds (II) and (III) are isomers. The Pt—B distances are in the range 2.214 (7)–2.303 (7) Å for (I), 2.178 (16)–2.326 (16) Å for (II) and 2.205 (6)–2.327 (6) Å for (III).  相似文献   

11.
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine ( L ), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, ( I ), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, ( II ), bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, ( III ), and catena‐poly[[[diiodidozinc(II)]‐μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, ( IV ), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex ( I ) is isomorphic with complex ( III ) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex ( II ) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I? anion and guest CHCl3 molecule, complex ( IV ) displays a significantly different structure with respect to complexes ( I )–( III ). C—H…Cl and C—H…N hydrogen bonds, and π–π stacking or C—Cl…π interactions exist in complexes ( I )–( IV ), and these weak interactions play an important role in the three‐dimensional structures of ( I )–( IV ) in the solid state. In addition, the fluorescence properties of L and complexes ( I )–( IV ) were investigated.  相似文献   

12.
The known 1,8‐naphthyridine‐2,7‐dicarboxaldehyde was prepared by SeO2 oxidation of 2,7‐dimethyl‐1,8‐naphthyridine. The dimethylated naphthyridine molecule was assembled from an adaptation of the Skraup synthesis using 2‐amino‐6‐methylpyridine and crotonaldehyde to afford a reproducible 37% yield, and constitute a significant advance over the literature of this reaction. The condensation of 1,8‐naph‐thyridine‐2,7‐dicarboxaldehyde with various primary amines (R = ‐C6H11, ‐CH2C6H5, ‐C(CH3)3, ‐C10H15, and CH2CH2SCH2CH3) in alcohol affords diimines 1(a‐e) . The inherent crystallinity of 1(a‐e) affords pure compounds in reasonable to excellent yields (ca. 70%) after evaporation of solvent and recrystallization. The anticipated spectroscopic features of (N=C‐H) 1H nmr shift and v(C=N) in the ir spectrum appear around 8.50 δ and 1640 cm?1, respectively, for the series 1(a‐e) . These novel naph‐thyridines typically display the signature 1H nmr doublets at ca. 8.15‐8.30 δ ascribed to the 3 and 4 naphthyridine protons, consistent with a mirror plane (through the quaternary carbons) perpendicular to the naphthyridine plane, and syn, syn relationships of the naphthyridine moiety with each imine nitrogen lone pair. Complexation studies of 1(a‐e) with transition metals of biological relevance such as copper(I) and copper(II) will be reported elsewhere.  相似文献   

13.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

14.
The syntheses and characterization of linear silarylene‐siloxane‐diacetylene polymers 3a–c and their thermal conversion to crosslinked elastomeric materials 4a–c are discussed. Inclusion of the diacetylene unit required synthesis of an appropriate monomeric species. 1,4‐Bis(dimethylaminodimethylsilyl)butadiyne [(CH3)2N? Si(CH3)2? C?C? C?C? (CH3)2Si? N(CH3)2] 2 was prepared from 1,4‐dilithio‐1,3‐butadiyne and 2 equiv of dimethylaminodimethylchlorosilane. The linear polymers were prepared via polycondensation of 2 with a series of disilanol prepolymers. The low molecular weight silarylene‐siloxane prepolymers 1a–c (terminated by hydroxyl groups) were synthesized via solution condensation of an excess amount of 1,4‐bis(hydroxydimethylsilyl)benzene with bis(dimethylamino)dimethylsilane. The linear polymers were characterized by 1H and 13C NMR, Fourier transform infrared spectroscopy, gel permeation chromatography, thermogravimetric analysis (TGA), and DSC. The elastomers exhibited long‐term oxidative stability up to 330 °C in air as determined by TGA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 88–94, 2002  相似文献   

15.
In trans‐bis(5‐n‐butyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)copper(II), [Cu(C10H12NO2)2(CH4O)2], the Cu atom lies on a centre of symmetry and has a distorted octahedral coordination. The Cu—O(methanol) bond length in the axial direction is 2.596 (3) Å, which is much longer than the Cu—­O(carboxylate) and Cu—N distances in the equatorial plane [1.952 (2) and 1.977 (2) Å, respectively]. In mer‐tris(5‐n‐bu­tyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­iron(III), [Fe(C10H12NO2)3], the Fe atom also has a distorted octahedral geometry, with Fe—O and Fe—N bond‐length ranges of 1.949 (4)–1.970 (4) and 2.116 (5)–2.161 (5) Å, respectively. Both crystals are stabilized by stacking interactions of the 5‐n‐butyl­pyridine‐2‐carboxyl­ate ligand, although hydrogen bonds also contribute to the stabilization of the copper(II) complex.  相似文献   

16.
This article describes the synthesis and characterization of polyisobutylene (PIB) carrying one primary hydroxyl head group and a tertiary chloride end group, [Ph? C(CH3)(CH2OH)–PIB–CH2? C(CH3)2Cl] prepared with direct functionalization via initiation. The polymerization of isobutylene was initiated with the α‐methylstyrene epoxide/titanium tetrachloride system. Living conditions were obtained from ?75 to ?50 °C (198–223 K). Low molecular weight samples (number‐average molecular weight ~ 4000 g/mol) were prepared under suitable conditions and characterized by Fourier transform infrared and 1H NMR spectroscopy. The presence of primary hydroxyl head groups in PIB was verified by both methods. Quantitative Fourier transform infrared with 2‐phenyl‐1‐propanol calibration and 1H NMR performed on both the hydroxyl‐functionalized PIB and its reaction product with trimethylchlorosilane showed that each polymer chain carried one primary hydroxyl head group. The synthetic methodology presented here is an effective and simple route for the direct functionalization of PIB. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1005–1015, 2002  相似文献   

17.
The title imino–phosphine compound, [PdCl2(C26H22NP)]·CH3CN, was prepared by reaction of N‐[2‐(diphenylphosphanyl)benzylidene]‐2‐methylaniline with dichlorido(cycloocta‐1,5‐diene)palladium(II) in dry CH2Cl2. The PdII cation is coordinated by the P and N atoms of the bidentate chelating ligand and by two chloride anions, generating a distorted square‐planar coordination geometry. There is a detectable trans influence for the chloride ligands. The methyl group present in this structure has an influence on the crystal packing.  相似文献   

18.
Outer‐sphere reduction of hexacyanoferrate(III) by some enolizable/nonenolizable aldehydes (viz., aliphatic, heterocyclic, and aromatic aldehydes) in alkaline medium has been studied spectrophotometrically at λmax = 420 nm. The reactions are first order each in [aldehyde] and [Fe(CN)63?]. The rate increases with an increase in [OH?] in the oxidation of aliphatic and heterocyclic aldehydes, whereas it is independent of [OH?] in the reaction with aromatic aldehydes. The intervention of free radicals in the reaction mixture was carried out using both acrylonitrile and acrylamide scavenger in two different experiments. The kinetic results indicate that the oxidation of benzaldehyde in aqueous medium proceeds at a slower rate than the aliphatic aldehydes (other than formaldehyde) and furfural. The values of third‐order rate constant (k3) at 308 K in the oxidations of some aliphatic aldehydes and furfural follow the order (CH3)2CH? > CH3CH2? > CH3? > C4H3O? > H? . The rate constants correlate with Taft's σ* value, the reaction constant being negative (–9.8). The pseudo–first‐order rate constants in the oxidations of benzaldehyde and substituted benzaldehydes follow the order ? NO2 > ? H > ? Cl > ? OCH3. The Hammett plot is also linear with a ρ value (0.6488) for meta‐ and para‐substituted benzaldehydes. The kinetic isotope effect for benzaldehyde (kH/kD = 1.93 at 303 K) was obtained. The rate‐determining step is the outer‐sphere formation of Fe(CN)64? and free radicals, which is followed by the rapid oxidation of free radicals by Fe(CN)63? to give products. The kinetic data and hence thermodynamic parameters have been used to distinguish enolizable and nonenolizable aldehydes. An attempt has also been made to correlate kinetic data with hydration equilibrium constants of some aliphatic aldehydes. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 494–505, 2012  相似文献   

19.
Phosphoraneiminato‐Acetato Complexes of Cobalt and Cadmium with M4N4 Heterocubane Structure The phosphoraneiminato‐acetato complexes [M(NPEt3)(O2C–CH3)]4 with M = Co and Cd are formed from the anhydrous metal(II) acetates with excess Me3SiNPEt3 at 180 °C. By crystallization from diethyl ether blue, moisture sensitive single crystals of [Co(NPEt3) · (O2C–CH3)]4 can be obtained, while colourless single crystals of [Cd(NPEt3)(O2C–CH3)]4 · 2 CH2Cl2 originate from dichloromethane solution. In vacuo the intercalary CH2Cl2 is released. The complexes are characterized by their IR spectra and by crystal structure analyses. In both complexes the metal atoms are associated via μ3–N bridges of the (NPEt3) groups to form heterocubanes. In the cobalt complex the acetato ligands are bonded in a semichelate fashion with a short Co–O and a long Co–O bond each (Co–O distances in average 199.5 and 257.4 pm). In the cadmium complex the acetato groups form almost symmetrical chelates (Cd–O distances in average 232.1 and 237.8 pm); this leads to a distorted trigonal‐bipyramidal arrangement at the cadmium atoms. [Co(NPEt3)(O2C–CH3)]4: Space group P 1, Z = 4, lattice dimensions at –60 °C: a = 1110.1(2), b = 2051.3(5), c = 2169.5(4) pm, α = 100.03(2)°, β = 103.404(15)°, γ = 97.63(2)°, R = 0.0480. [Cd(NPEt3)(O2C–CH3)]4 · 2 CH2Cl2: Space group C2/c, Z = 4, lattice dimensions at –80 °C: a = 1550.2(1), b = 2101.1(1), c = 1706.1(1) pm, β = 91.09(1)°, R = 0.0311.  相似文献   

20.
The solid‐state structure of the first reported homoleptic copper di‐2‐pyridyl­phosphinate complex shows an extremely large `z‐out' tetragonal distortion, with an axial Cu⋯O distance of 2.430 (2) Å. The title complex, [Cu(C10H8N2O2P)2]·2CH2Cl2 or Cu[py2P(O)O]2·2CH2Cl2, comprises two di‐2‐pyridyl­phosphinate ligands coordinated to the central copper(II) ion, which sits on an inversion center. The pyridyl rings of one ligand are trans to the pyridyl rings of their symmetry‐related counterpart. The two trans py–Cu–py moieties are coplanar, as required by the inversion symmetry. A disordered dichloromethane solvent mol­ecule is cocrystallized in the asymmetric unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号