首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic and equilibrium aspects of three different poly(ethylene oxide) alkylethers (C12E5, C12E7, C14E7) near a flat cellulose surface are studied. The equilibrium adsorption isotherms look very similar for these surfactants, each showing three different regions with increasing surfactant concentration. At low surfactant content both the headgroup and the tail contribute to the adsorption. At higher surface concentrations, lateral attraction becomes prominent and leads to the formation of aggregates on the surface. The general shape of the isotherms and the magnitude of the adsorption resemble mostly those for hydrophilic surfaces, but both the ethylene oxide and the aliphatic segments determine affinity for the surface. The adsorption and desorption kinetics are strongly dependent on surfactant composition. At bulk concentrations below the CMC, the initial adsorption rate is attachment-controlled. Above the CMC, the micellar diffusion coefficient and the micellar dissociation rate play a crucial role. For the most hydrophilic surfactant, C12E7, both parameters are relatively large. In this case, the initial adsorption rate increases with increasing surfactant concentration, also above the CMC. For C12E5 and C14E7 there is no micellar contribution to the initial adsorption rate. The initial desorption kinetics are governed by monomer detachment from the surface aggregates. The desorption rate constants scale with the CMC, indicating an analogy between the surface aggregates and those formed in solution.  相似文献   

2.
Heterogeneous and homogeneous immunoassays of human thyroid stimulating hormone (hTSH) were developed on immunometric basis using aromatic Tb(III) chelates as electrochemiluminescent labels and varied types of disposable oxide-covered aluminum electrodes as the solid phase of the immunoassays. The long luminescence lifetime of the present labels allows the use of time-resolved electrochemiluminescence detection and provide the low detection limits of these labels and, thus, sensitive immunoassays. The primary antibody of immunometric immunoassays was coated upon aluminum oxide surface by physical absorption. In homogeneous immunoassays using 66 μl cell and 15 min incubation time, a linear calibration range of 0.25-324 μU/ml was obtained by applying only a single cathodic excitation pulse in the detection step of the assay.  相似文献   

3.
Adsorption, stability, and organization kinetics of organophosphonic acids on single-crystalline alumina surfaces were investigated by means of atomic force microscopy (AFM)-based imaging, nanoshaving, and nanografting. AFM friction and phase imaging have shown that chemical etching and subsequent annealing led to heterogeneities on single-crystalline surfaces with (0001) orientation. Self-assembly and stability of octadecylphosphonic acid (ODPA) were shown to be strictly dependent upon the observed heterogeneities of the surface termination, where it was locally shown that ODPA can loosely or strongly bind on different terminations of the crystal surface. Organization kinetics of ODPA was monitored with nanografting on (0001) surfaces. Supported by measurements of surface wettability and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), it was demonstrated that the lack of organization within the protective adsorbed hexylphosphonic acid (HPA) monolayer on alumina surfaces facilitated the reduced confinement effect during nanografting, such that kinetics information on the organization process of ODPA could be obtained.  相似文献   

4.
One-electron reduction of oxygen, hydrogen peroxide, potassium peroxodisulphate and potassium peroxodiphosphate was studied during the dissolution of oxide-covered aluminum in alkaline aqueous solution. The production of free oxidizing radicals was monitored by luminol chemiluminescence (CL). It was observed superoxide, hydroxyl, sulphate and phosphate radicals can be generated by the present method. In addition, luminol can be detected below nanomolar level, the linear logarithmic calibration range covering several orders of magnitude of concentration. The metallic aluminum and low-valent aluminum ions are the primary reductants of the system. The electron transfer to the solution is proposed to occur by tunneling through a thin insulating aluminum oxide film at the solid/electrolyte interface in moderately alkaline solutions with simultaneous dissolution of the forming oxide film. In a highly alkaline solution, it is more probable that the oxidation of aluminum species occurs in direct contact of the metallic aluminum with the aqueous solution. In the latter case, short-lived solvated low-valent aluminum ions, hydrogen atom and its deprotonated form, the hydrated electron, can exist as reducing mediators in the chemical reactions in the close vicinity of the dissolving solid/electrolyte interface. Luminol was also observed to exhibit CL under purely reducing conditions produced by a presently unknown excitation pathway.  相似文献   

5.
One major challenge in the analysis of small ions by capillary zone electrophoresis (CZE) is detection. The most common commercially available detector for CZE is based on UV absorbance. For many small molecules, however, little UV absorbance occurs above 210 nm, limiting the usefulness of this detection method. Carbohydrates, alcohols and amides have been separated and directly detected by complexation with sodium borate. It has been shown that these complexes have UV absorbances in the range of 220 to 280 nm, whereas the analytes alone are UV transparent at energies less than 200 nm. Separation and direct detection of organophosphonic acids using sodium borate as both a buffer and derivatization agent is demonstrated. Detection limits on the order of nanograms are reported with separations that exhibit 10 000 to 1 740 000 theoretical plates. The ultraviolet, infrared, nuclear magnetic resonance and mass spectra of various borate/phosphonic acid esters are explored.  相似文献   

6.
The preparation of self-assembled monolayers (SAMs) of organophosphonic acids on indium tin oxide (ITO) surfaces from different solvents (triethylamine, ethyl ether, tetrahydofuran (THF), pyridine, acetone, methanol, acetonitrile, dimethyl sulfoxide (DMSO), or water) has been performed with some significant differences observed. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and contact angle measurement demonstrated that the quality of SAMs depends critically on the choice of solvents. Higher density, more stable monolayers were formed from solvents with low dielectric constants and weak interactions with the ITO. It was concluded low dielectric solvents that were inert to the ITO gave monolayers that were more stable with a higher density of surface bound molecules because higher dielectric constant solvents and solvents that coordinate with the surface disrupted SAM formation.  相似文献   

7.
The adsorption of Suwannee River fulvic acid (SRFA) on boehmite, gamma-AlO(OH), has been examined by both macroscopic adsorption and in situ ATR-FTIR spectroscopic techniques. At a SRFA concentration approaching surface saturation (F = 5.3 micromol m(-2)), adsorption is at a maximum at low pH and decreases as pH is increased. The ATR-FTIR spectral features of adsorbed SRFA are very similar to those measured approximately 1-2 pH units higher in solution, indicating that (i) the SRFA appears to be predominantly adsorbed at the boehmite/water interface in an outer-sphere complexation mode and (ii) the positively charged boehmite/water interface stabilizes SRFA molecules against protonation at low pH.  相似文献   

8.
X‐ray photoelectron spectroscopy (XPS) and near‐edge x‐ray absorption fine structure (NEXAFS) spectroscopy have been used to study the time‐dependent adsorption and molecular orientation behaviour of octadecyltrimethoxysilane (ODTMS) on native aluminium oxide surfaces. By measuring the adsorption isotherm using XPS, we show that ODTMS molecules exhibit oscillatory adsorption. The oscillatory adsorption behaviour for ODTMS is analogous to that observed for its simpler short‐chain ‘cousin’—propyltrimethoxysilane (PTMS)—and suggests that the length of the functional alkyl chain on an organosilane does not have a significant influence upon the oscillatory adsorption mechanism. The oscillation in the ODTMS adsorption isotherm shows a maximum and a minimum in coverage at an adsorption time of ~30 and ~65 s, respectively, for a 0.75% ODTMS solution in a 90% ethanol–10% water mixture at pH 4. The time‐dependent orientation behaviour of the ODTMS molecules during adsorption was examined using angular‐dependent carbon K‐edge NEXAFS spectroscopy. We show that the alignment of the ODTMS film changes systematically with deposition time and appears to be correlated with coverage measurements obtained using XPS. In particular, by combining the XPS and NEXAFS results we demonstrate that the minimum ODTMS coverage corresponds to a film whose alignment appears to be predominantly randomized. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The regulation mechanism of organic additives on the crystallization of inorganic crystal is fundamentally important in biomineralization. Experimentally, it was found that the amino acids glycine (Gly) and glutamic acid (Glu) could lead to the formation of rod- and plate-like hydroxyapatite (HAP) crystallites, respectively. The detailed adsorption behavior of Gly and Glu on HAP crystal faces was studied by molecular dynamics (MD) simulation. The specific adsorption sites and patterns of Gly and Glu on the (100) and (001) faces of HAP crystals were revealed at the atomic level. The amino acids adsorbed on the HAP (001) and (100) faces with their positive amino groups occupied vacant calcium sites, and their negative carboxylate groups occupied vacant P or OH sites precisely and formed an ordered adsorption layer. The atomic force microscopy pulling simulation and free energy calculation showed that Glu was much more difficult to depart from the HAP (001) face than that from the (100) face. This result indicated that Glu preferred to adsorb strongly onto the HAP (001) face, which resulted in the formation of plate-like HAP. However, Gly did not show any significantly preferential adsorption between these two HAP faces. Thus, the habits of HAP, rod-like crystallites, were not altered during the HAP crystallization in the presence of Gly. Combined with experimental results, our study demonstrated that the MD simulation of interfacial structures could improve our understanding of biological regulation in mineralization processes at the atomic level.  相似文献   

10.
11.
Adsorption of phenol on aspen and pine wood is investigated. It is shown that adsorption isotherms are described by the Langmuir model. The woods’ specific surface areas and adsorption interaction constants are determined. It is found that the sorption of phenol on surfaces of aspen and pine is due to Van der Waals interactions (Ssp = 45 m2/godw for aspen and 85 m2/godw for pine). The difference between the adsorption characteristics is explained by properties of the wood samples’ microstructures.  相似文献   

12.
13.
Substrates of aluminum (Al) deposited by physical vapor deposition onto Si substrates and then chemically reacted with perfluorodecylphosphonic acid (PFDPAlSi), decylphosphonic acid (DPAlSi), and octadecylphosphonic acid (ODPAlSi) were studied by x-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM), and friction force microscopy, a derivative of AFM, to characterize their surface chemical composition, roughness, and micro-/nanotribological properties. XPS analysis confirmed the presence of perfluorinated and nonperfluorinated alkylphosphonate molecules on the PFDPAlSi, DPAlSi, and ODPAlSi. The sessile drop static contact angle of pure water on PFDPAlSi was typically more than 130 degrees and on DPAlSi and ODPAlSi typically more than 125 degrees indicating that all phosphonic acid reacted AlSi samples were very hydrophobic. The surface roughness for PFDPAlSi, DPAlSi, ODPAlSi, and bare AlSi was approximately 35 nm as determined by AFM. The surface energy for PFDPAlSi was determined to be approximately 11 mNm by the Zisman plot method compared to 21 and 20 mNm for DPAlSi and ODPAlSi, respectively. Tribology involves the measure of lateral forces due to friction and adhesion between two surfaces. Friction, adhesion, and wear play important roles in the performance of micro-/nanoelectromechanical systems. PFDPAlSi gave the lowest adhesion and coefficient of friction values while bare AlSi gave the highest. The adhesion and coefficient of friction values for DPAlSi and ODPAlSi were comparable.  相似文献   

14.
15.
16.
《Colloids and Surfaces》1988,29(4):359-371
We have developed an experimental set-up using radiolabelled proteins for the continuous measurement, as a function of time, of the excess concentration of superficial protein at a solid/liquid interface. The experimental conditions were designed in order to minimize the coupling of the interfacial interaction with bulk diffusion, and therefore to work within the limit of the interfacial interaction control. Chemical kinetics were assumed to follow a Langmuir equation. The absorption (Ka) and desorption (Kd) rate constants have been evaluated in the case of fibrinogen and albumin adsorption, onto glass beads and synthetic hydroxyapatite powder, respectively. In order to determine these parameters, a non-linear differential equation (obtained by combining the Langmuir rate equation and a mass-balance equation) was solved by the fourth-order Runge-Kutta method. The results obtained are consistent with the hypothesis of an adsorption rate controlled by the interfacial interaction.  相似文献   

17.
Fully relativistic four-component density functional theory with the general gradient approximation calculations have been performed to determine the adsorption energy and position of the superheavy element 112 on a Au surface. Extended cluster as well as embedded cluster calculations were used to simulate the surface which allow for the top, bridge, and hollow adsorption sites without losing the advantage of symmetry considerations. Comparison with analogous calculations of the adsorption of the homologue element Hg allows to predict the adsorption of element 112 at a bridge site with a binding energy of 0.67 eV.  相似文献   

18.
The behaviors of hydrogen (H) adsorbed on the palladium (Pd) nanoparticles (NPs) are examined with the modified analytic embedded‐atom method potentials and MORSE potentials. We study the effects of particle size and H coverage, and compare their adsorption properties of nanoparticle's facets with that of flat surfaces. We simulate the Pd truncated octahedron NPs with atoms from 38 to 2406 and the coverage of adsorbed H up to 1.0 monolayer (ML). Site preferences, adsorption geometries, adsorption energies, and bond lengths of H? Pd are calculated. We have also calculated the potential energy surface (PES). It is clear that the H atom binding to particle facets is quite stronger than that of flat surfaces when the particle size is smaller than 3.2 nm. We have found a significant variation that adsorption energies ascend gradually with increasing the particle size or surface coverage of H, and the adsorption energy varies about 0.6 eV for (111) facet and 0.3 eV for (100) facet as the coverage up to 1.0 ML. Our results are in reasonable agreement with the experimental values and other calculations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Monte Carlo simulations are used to study adsorption of random heteropolymers on disordered substrates. The adsorbent surface is modelled as an impenetrable wall with the random distribution of sites characterised by short-ranged segment-specific interactions with the polymer. Spatial fluctuations in the interaction strength are described as a Gaussian process with zero mean and variance σ1 which is proportional to the site/segment potential, and to the loading of sites on the surface. In all cases, a moderate depletion in the polymer density is observed at small surface loading. Upon increasing σ1 the polymer begins to adsorb on the surface. At a certain threshold loading, we observe a sharp second adsorption transition followed by gradual saturation. The transition is interpreted in terms of pattern matching; i.e. the heteropolymers accomodate themselves at surface domains with site distributions that match the configuration and the sequence of the chain when the sequence and surface site distributions are related in a special way. Distinct peaks in heat capacity and compressibility observed at the adsorption transition point to a first order process envisaged in earlier replica/mean-field analysis. These results suggest that random heteropolymers with designed sequence statistics can ‘recognise’ multifunctional disordered surfaces due to statistical pattern-matching.  相似文献   

20.
We discuss the adsorption of polymer solutions on chemically heterogeneous surfaces. Two types of heterogeneities are considered, annealed and quenched. In both cases, the disorder increases the adsorption. For a same adsorption strength, the adsorbed amount of polymer is higher on an annealed surface than on a quenched surface. The adsorption on an annealed surface can induce a two-dimensional phase transition on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号