首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We have calculated the geometry and energy of the valence tautomers benzene oxide and oxepin using the semiempirical AM1 model and the 6–31G and 6–31G* basis sets utilizing full geometry optimization. In the oxide the folding angle, the angle between the epoxide ring and the adjacent plane containing four carbon atoms, is about 106°. The carbon skeleton is almost planar, the folding angle, the angle between the two four-carbon atom planes being about 175°. In contrast, oxepin is found to have a marked boat-shaped structure with the corresponding and angles about 137° and 159°, respectively. The AM1, 6–31G, and 6–31G* calculations give –11.4, –10.8, and –2.9 kcal mol–1 for the energy change that accompanies the valence tautomerism, oxide-oxepin, compared to an experimental value of about +0.3 kcal mol–1. Single point calculations of the energies at the 6–31 G* geometry using Møller-Plesset perturbation theory to second order (MP2/6–31 G*) and third order (MP3/6–31G*) give E T =+3.3 and +0.8 kcal mol–1. The values for the energy change in the transfer of epoxide oxygen from ethylene oxide to benzene using AM1, 6–31G, and 6–31G* are in good agreement, viz., +31.1, +34.5, and +33.6 kcal mol–1, respectively. A large positive energy change is to be expected in view of the loss of benzene aromaticity.  相似文献   

2.
Summary Electronic structure and possible unimolecular reaction paths of a linear four-atom molecule HNOO to be formed by the addition of NH(3) toward O2(3 g ) are investigated by the SCF and MRD-CI calculations employing the 6–31G** basis functions. HNOO in its ground state (1 A) is an ozone-like diradicaloid, whose N–O binding energy is only 27 kJ/mol. Geometries and excitation energies of various diradical (excited) states, both singlet and triplet, are examined. The isomerization paths of the ground-state HNOO(1 A) are traced by a multi-configuration (MC) SCF procedure and the activation barrier heights evaluated by the CI treatment. It has proved that energetically the most favorable is the 1,3-hydrogen migration to give hydroperoxynitrene NOOH(1 A) with the barrier height of 62 kJ/mol. The nitrene should be extremely unstable; it is liable to be decomposed to NO + OH with virtually no activation barrier.Presented at the 7th International Congress on Quantum Chemistry, Menton, July 1991  相似文献   

3.
Stereochemical nonrigidity of the hexacoordinated (O—Ge)-chelate bis(2-oxo-1-hexahydroazepinylmethyl)dichlorogermane in CDCl3 was studied by dynamic NMR. The activation parameters of the intramolecular rearrangement at the coordination center are G # 298 = 12.3±0.2 kcal mol–1, H # = 16.9±0.2 kcal mol–1, and S # = 15.3±0.7 cal mol–1 K–1. The dissociative mechanism of ligand exchange involving the cleavage of the OGe coordination bond is discussed based on the positive entropy of activation.  相似文献   

4.
The molecular design of several synthetic artificial enzymes, which mimic the action of the serine protease-chymotrypsin, incorporates the phenylimidazole molecular fragment to play the role of the His-57 residue in the native enzyme active site. Study of these artificial enzymes by molecular modeling techniques requires accurate torsional force field parameters for the phenylimidazole interring bond. This, in turn, requires accurate characterization of the barrier to rotation around this bond. Previous semiempirical calculations of this rotational barrier have neglected geometry optimization of the molecule at the points along the rotational pathway. The 4-phenylimidazole rotational barrier (5.6 kcal mol–1] presented here was obtained by full ab initio geometry optimization at the 3–21G level at each of the points along the rotational pathway.  相似文献   

5.
The geometry and energy of aniline have been calculated using the 6-31G and 6-31G*(5D) basis sets for the planar structure and various pyramidal structures, assuming that the ring and the N-atom bonded to it lie in the same plane, but otherwise with full geometry optimization. With the 6-31G basis set the planar structure is predicated to be the most stable, whereas the inclusion of polarization functions in the 6-31G*(5D) basis set finds a pyramidal structure with the out-of-plane angle =42.3° to be most stable and the energy barrier to inversion via the planar transition state to be 1.59±0.02 kcal mol–1, in close agreement with experiment. Completing the optimization, allowing the N-atom and the C- and H-atoms of the ring to take up equilibrium out-of-plane positions increases the calculated energy carrier to inversion by less than 0.1 kcal mol–1 to 1.66 kcal mol–1. The ring adopts a very shallow inverted boat-type conformation with N7-C1C4 = 2.0°.  相似文献   

6.
Water exchange on Mn centers in proteins has been modeled with density functional theory using the B3LYP functional. The reaction barrier for dissociative water exchange on [MnIV(H2O)2(OH)4] is only 9.6 kcal mol–1, corresponding to a rate of 6×105 s–1. It has also been investigated how modifications of the model complex change the exchange rate. Three cases of water exchange on Mn dimers have been modeled. The reaction barrier for dissociative exchange of a terminal water ligand on [(H2O)2(OH)2MnIV(-O)2MnIV(H2O)2(OH)2] is 8.6 kcal mol–1, while the bridging oxo group exchange with a ring-opening mechanism has a barrier of 19.2 kcal mol–1. These results are intended for interpretations of measurements of water exchange for the oxygen evolving complex of photosystem II. Finally, a tautomerization mechanism for exchange of a terminal oxyl radical has been modeled for the synthetic O2 catalyst [(terpy)(H2O)MnIV(-O)2MnIV(O)(terpy)]3+ (terpy=2,2:6,2-terpyridine). The calculated reaction barrier is 14.7 kcal mol–1.Contribution to the Björn Roos Honorary Issue  相似文献   

7.
Summary G2 theory is shown to be reliable for calculating isodesmic and homodesmotic stabilization energies (ISE and HSE, respectively) of benzene. G2 calculations give HSE and ISE values of 92.5 and 269.1 kJ mol–1 (298 K), respectively. These agree well with the experimental HSE and ISE values of 90.5±7.2 and 268.7±6.3 kJ mol–1, respectively. We conclude that basis set superposition error corrections to the enthalpies of the homodesmotic or isodesmic reactions are not necessary in calculations of the stabilization energies of benzene using G2 theory. The calculated values of the enthalpies of formation of such molecules containing multiple bonds such as benzene ands-trans 1,3-butadiene, which are found from the enthalpies of isodesmic and homodesmotic reactions rather than of atomization reactions, demonstrate good performance of G2 theory. Estimates of theH f o value for benzene from the G2 calculated enthalpies of homodesmotic reaction (2) and isodesmic reaction (3) are 80.9 and 82.5 kJ mol–1 (298 K), respectively. These are very close to the experimentalH f o value of 82.9±0.3 kJ mol–1. TheH f o value ofs-trans 1,3-butadiene calculated using the G2 enthalpy of isodesmic reaction (4) is 110.5 kJ mol–1 and is in excellent agreement with the experimentalH f o value of 110.0±1.1 kJ mol–1.  相似文献   

8.
A detailed exploration of the configurational and conformational space of glycolic acid and their conjugate bases has been carried out with the aid of first principles quantum chemical techniques at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory. The most stable configuration among the eight possible glycolic acid conformers corresponds to the E-s-cis, s-trans configuration, while the highest energy E-s-trans, s-cis conformer was found at 10.88 and 12.17 kcal mol−1 higher in energy at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. Upon dissociation of glycolic acid the s-cis(syn), and s-trans(anti) configurations of the glycolate anion can be formed. The anti conformer was found to be less stable than the syn one by 14.20 and 16.87 kcal mol−1 at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p)) levels of theory, respectively. The computed B3LYP/6-311+G(d,p) proton affinity of the syn conformer for the protonation process affording the more stable E-s-cis, s-trans conformer, in vacuum was found to be 325.35 kcal mol−1G0 value). From a methodological point of view, our results confirm the reliability of the integrated computational tool formed by the B3LYP density functional model. This model has subsequently been used to investigate the interaction of Ca2+ ions with the glycolic acid conformers and their conjugate bases in vacuum and in the presence of extra water ligands. For the complexes of glycolic acid conformers the η2–O,O–(COOH) coordination, that is the structure that arises from the coordination of the Ca2+ to the carboxylic group, is the global minimum of the PES, while the η2–O(OH),O–(COOH) coordination is a local minimum found at only 1.0 and 1.3 kcal mol−1 higher in energy at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. Moreover, the two isomers exhibit nearly the same binding affinities, which are predicted to be 89 and 85 kcal mol−1 at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. The same holds also true for the complexes of the glycolate anion. The η2–O,O–(COO) coordination involving the syn conformer of the glycolato ligand, is the global minimum, while the η2–O(OH),O–(COO) one lies at 1.5 and 5.6 kcal mol−1 higher in energy at the B3LYP/6-311+G(d,p) and CCSD(T)/6-31G(d,p) levels of theory, respectively. The other conformer with an η2–O,O–(COO) coordination involving the anti conformer of the glycolato ligand, is less stable by only 0.2 kcal mol−1 at both levels of theory. Noteworthy is the trend seen for the incremental binding energy due to the successive addition of water molecules to [HOCH2C(O)O]Ca2+ species; the computed values are 30.4, 26.8, 22.9 and 16.2 kcal mol−1 at the B3LYP/6-311+G(d,p) level of theory for the mono-, di-, tri- and tetraaqua complexes, respectively. This trend arising from the repulsion of the dipoles between the water ligands and from unfavorable many body interactions is in accordance with those anticipated from electrostatic considerations. The Ca(II)-water interaction weakens with increasing coordination of the metal. Obviously, it is the electrostatic nature of the Ca(II)-water interactions that accounts well for the computed coordination geometries of the cationic (aqua)(glycolato)calcium complexes. Calculated structures, relative stability and bonding properties of the conformers and their complexes with [Ca(OH2)n]2+ (n=0–4) ions are discussed with respect to computed electronic and spectroscopic properties, such as charge density distribution, harmonic vibrational frequencies and NMR chemical shifts.  相似文献   

9.
Continuous stacking hybridization of oligodeoxyribonucleotides with the stem of a preformed minihairpin structure of a DNA template was studied by thermal denaturation in solution. The thermodynamic parameters (H°, S°, and G°37) were determined for the formation of all 16 possible types of coaxial stackings (or cooperative interactions) 5" X*pY 3"/5" ZZ"3" (an asterisk stands for a nick) between the terminal complementary base pairs of two adjacent duplexes formed on a common DNA template. The maximum efficacy G°37 of coaxial stacking (1 M NaCl, pH 7.4) was observed for the G*pC/GC interaction (–2.76 kcal mol–1), whereas the minimum efficacy was observed for the T*pA/TA interaction (–0.85 kcal mol–1). In the general case, the efficacy of the cooperative interaction at the X*pY/ZZ" junction does not correlate with the energy of formation of the corresponding unified XY/ZZ" dinucleotide pair in the structure of native DNA. The formation of a stack by the terminal oligonucleotide bases upon their continuous stacking hybridization makes the major and governing contribution to the energy of cooperative interaction.  相似文献   

10.
Calculation methods, based on hybrid density-functional theory with the basis sets of B3LYP/ 6-311+G (2d, p)//B3LYP/6-31G(d, p)and B3LYP/6-31+G(d)//B3LYP/6-31G(d, p), were applied to determine the thermodynamic characteristics of various energetic nitro compounds. A parametric modification equation and the least-squares approach were used to identify 21 of the energetic research compounds. The atomization energies of these 21 compounds have an average relative error of 0.21–0.25% of the experimental values. The enthalpy (H f) and the Gibbs energy (G f) of formation have mean absolute errors of 10.8–11.4 kJ/ mol (2.6–2.7 kcal/mol) and 10.0–10.3 kJ/mol (2.4 kcal/ mol), respectively. The enthalpy and the Gibbs energy of formation obtained exceed those in the literature obtained by semiempirical calculations. The calibrated least-squares parameters and parametric equations were used to predict H f and G f for the five newly developed energetic nitro compounds for further applications.Acknowledgements. The authors would like to thank the National Science Council of the Republic of China for financial support of this work under grant no. NSC-91-2113-M-014-003. The National Center for High-Performance Computing providing the computation facility is also acknowledged.  相似文献   

11.
Gas-phase reaction of acetylene with HgCl2 resulting in -chlorovinylmercury derivatives and their interaction with Cl and I anions and KI molecule was studied by the ab initio MP2 method with the Dunning—Hay double zeta basis set and LanL pseudopotential for Hg, K, and I atoms. The reaction was shown to proceed via a -complex of acetylene and HgCl2 (the calculated enthalpy of formation is –6.5 kcal mol–1). According to calculations, the activation energy of formation of cis--chlorovinylmercury chloride from acetylene and HgCl2 is 31 kcal mol–1. Chloride and iodide anions and KI molecule are readily added to both cis- and trans-isomer of -chlorovinylmercury chloride to give stable species.  相似文献   

12.
The kinetics of the reaction of dimethyldioxirane with fullerene C60 was studied, and the activation parameters logk = (8.3±0.8) – (14.2±0.9)/, ( = 2.3RT kcal mol–1) (20—45°C) were determined. The formation of paramagnetic particles was detected.  相似文献   

13.
The structures and energies of axial and equatorial conformers and rotamers of 4-substituted tetrahydro-2H-thiopyran-1,1-dioxides (tetrahydrothiopyran-1,1-dioxides, thiacyclohexane-1,1-dioxides, thiane-1,1-dioxides, and 1,1-dioxothianes; CH3, CH2OH, CHO, COCH3, CN, F, Cl, Br, and OCOCH3) were calculated using the hybrid density functionals B3LYP, B3P86, and B3PW91, as well as MP2 and the 6-31G(d), 6-31G(2d), 6-31G(3d), 6-31G(d,p), and 6-31+G(d) basis sets. MP2/6-31+G(d)/ /HF/6-31+G(d) [–G° = 1.73 kcal/mol], B3P86/6-31G(d) [–G° = 1.75 kcal/mol], and B3PW91/6-31G(d) [–G° = 1.85 kcal/mol] gave conformational free energy (G°) values at 180 K for 4-methyltetrahydro-2H-thiopyran-1,1-dioxide which were similar to the reported experimental values for methylcyclohexane (–G° = 1.80 kcal/mol), 4-methyltetrahydro-2H-thiopyran (–G° = 1.80 kcal/mol), and other 4-methyl-substituted heterocycles. All levels of theory showed that the conformational preferences of the 4-methanoyl (4-formyl), 4-ethanoyl (4-acetyl), and 4-cyano substituents were small. The HF calculations gave conformational free energy (G°) values for 4-chlorotetrahydro-2H-thiopyran-1,1dioxide which were closer to the experimental value than the MP2 and density functional methods. The best agreement with available experimental data for 4-bromotetrahydro-2H-thiopyran-1,1-dioxide was obtained from the HF/6-31G(2d), HF/6-31G(3d), and B3LYP/6-31G(2d) calculations, and, for 4-acetoxytetrahydro-2H-thiopyran-1,1-dioxide, from the HF/6–31G(3d) calculations. The conformational free energies (G°) and relative energies (E) of the conformers and rotamers have been compared with the correspondingly substituted cyclohexanes and tetrahydro-2H-thiopyrans and are discussed in terms of dipole–dipole (electrostatic) interactions and repulsive nonbonded interactions (steric) in the most stable axial and equatorial conformers. The axial S=O bond lengths are shorter than the equatorial S=O bond lengths and the C2–C3 bond lengths in the substituents with carbon-bonded to the ring are shorter than the C3–C4 and C4–C-5 bond lengths. In contrast, the C2–C3 bond lengths in the 4-halogen and 4-acetoxy substituents are longer than the C3–C4 and C4–C-5 bond lengths.  相似文献   

14.
The title adduct (1) was synthesized, and its conformationally and configurationally rigid chiral structure in solution and in the crystal was established by NMR spectroscopy and by X-ray structural analysis. Atropoenantiomers of1 were observed by the1H NMR method in the presence of a chiral shift reagent. A barrier to their interconversïon was determined, Gx > Z5 kcal mol–1 (200 °C).Translated fromItvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1796–1799, July, 1996.  相似文献   

15.
The singlet—triplet energy splitting (ΔE ST = E S E T ) was calculated for formylnitrene (5) and for the syn- and anti-rotamers of carboxynitrene HOC(O)N (6) by the CCSD(T) method. Extrapolation of ΔE ST to a complete basis set was calculated to be negative for 5 and strongly positive for 6. Similar results were obtained by the G2 procedure. The reason for the dramatic stabilization of the singlet state appeared to be a special bonding interaction between the nitrogen and oxygen atoms, which results in the structure intermediate between those of nitrene and oxazirene. It was found that the B3LYP/6-31G(d) method overestimates ΔE ST by ∼9 kcal mol−1 for 5 and by ∼7 kcal mol−1 for 6. Taking into account this overestimation and the results of DFT calculations, it was concluded that benzoylnitrene has a singlet ground state. It was proved experimentally using photolysis of benzoyl azide in an argon matrix at 12 K that benzoylnitrene has a singlet ground state and its structure is similar to that of oxazirene. Nevertheless, these singlet intermediates have low barrier to the aziridine formation, which is traditionally considered to be a typical singlet nitrene reaction.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 519–526, March, 2005.  相似文献   

16.
The proton transfer and the character of the strong intramolecular O--H...O hydrogen bond (O...O 2.442 ) in 3-acetyl-4-hydroxycoumarin were analyzed based on the results of X-ray diffraction study in the temperature range from 100 to 353 K and quantum-chemical B3LYP/6-31G(d,p) calculations. The barrier to proton transfer along the H-bond line is low (2 kcal mol–1). However, no proton transfer was observed in the crystal at 100 K. Bader's topological analysis of the electron density distribution both in the crystal and in the isolated molecule demonstrated that the hydrogen bond corresponds to an intermediate type of interatomic interactions (E(r) < 0, 2(r) > 0 at the critical point (3, –1)).  相似文献   

17.
A non-covalent interaction force field model derived from the partition coefficient of 1-octanol/water solubility is described. This model, HINT for Hydropathic INTeractions, is shown to include, in very empirical and approximate terms, all components of biomolecular associations, including hydrogen bonding, Coulombic interactions, hydrophobic interactions, entropy and solvation/desolvation. Particular emphasis is placed on: (1) demonstrating the relationship between the total empirical HINT score and free energy of association, G interaction; (2) showing that the HINT hydrophobic-polar interaction sub-score represents the energy cost of desolvation upon binding for interacting biomolecules; and (3) a new methodology for treating constrained water molecules as discrete independent small ligands. An example calculation is reported for dihydrofolate reductase (DHFR) bound with methotrexate (MTX). In that case the observed very tight binding, G interaction–13.6 kcal mol–1, is largely due to ten hydrogen bonds between the ligand and enzyme with estimated strength ranging between –0.4 and –2.3 kcal mol–1. Four water molecules bridging between DHFR and MTX contribute an additional –1.7 kcal mol–1 stability to the complex. The HINT estimate of the cost of desolvation is +13.9 kcal mol–1.  相似文献   

18.
Naringenin is a natural widespread flavanone occurring in different foodstuffs that presents several important biological activities. Although its properties are well documented, its mechanisms of action are still controversial. The present article reports a conformational analysis of naringenin, using the semiempirical AM1 and ab initio methods, at the Hartree–Fock level of theory. The 3-21G, 3-21G*, 6-31G, and 6-31G** basis sets were used. The electron correlation effects were included through the Møller–Plesset second-order perturbation theory. The solvation of naringenin has been investigated through the standard SCRF, the supermolecule (SM), and the combined SM/SCRF models. The results have shown that there are two degenerate forms of naringenin, differing mainly by the orientation of a hydroxyl group (C4—OH). The energy barrier for the interconversion between them is ca. 6 kcal.mol–1, suggesting some conjugation between the -system of the aromatic B ring and the hydroxyl group (C4—OH).  相似文献   

19.
The reactivity of bis(siloxy)silanone groups (Si-0)2Si=O stabilized on a silica surface with respect to H2 molecules was studied. The reaction was found to give the (Si-O)2SiH(OH) groups. The rate constant for this process was determined. Its activation energy in the 300–580 K temperature range is 13.4±0.3 kcal mol–1, and the enthalpy is 54±5 kcal mol–1. The activation energy for the reverse reaction,viz., elimination of a hydrogen molecule, is equal to 65 kcal mol–1. Quantum-chemical calculations of hydrogenation of F2Si=O and (HO)2Si=O, which are the simplest molecular models of the silanone groups, were performed. Data on the geometrical and electronic structures of transition states and on the effects of substituents at the silicon atom on the reactivity of the silanone groups in this process were obtained. The optical absorption band of the surface silanone groups was quantitatively characterized. Its maximum is located at 5.65±0.1 eV; the extinction coefficient at the maximum (220 nm) is (3±0.5) · 10–18 cm2 molec.–1.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1951–1958, August, 1996.  相似文献   

20.
Vanadium(V) oxidation ofL-arabinose has been found to be first order with respect to oxidant and substrate concentrations. It has been found that the order with respect to [H+] changes from one in 2.5M–4.5M acid concentration range to two in 5.0M–6.5M acid concentration range. The oxidation rate has been found to increase with ionic strength and decrease with dielectric constant of the medium. Thermodynamic parameters E, S and G have been evaluated as 22.63±0.19 kcal/mol,–3.00±0.65 e. u. and 23.59±±0.05 kcal/mol respectively. The reaction has been found to be initiated by the formation of free radical in a slow rate determining step.
Kinetik und mechanismus der oxidation von L-arabinose mit vanadium(V)
Zusammenfassung Die Vanadium(V)-Oxidation vonL-Arabinose verläuft bezüglich des Oxidationsmittels und Substrats erster Ordnung. Bezüglich der Änderung von [H+] zeigte sich für den Bereich 2,5M–4,5M eine Abhängigkeit erster, im Bereich 5,0M–6,5M eine von zweiter Ordnung. Die Oxidationsgeschwindigkeit steigt mit der Ionenstärke und fällt mit der Dielektrizitätskonstanten des Mediums. Es wurden die thermodynamischen Parameter E, S und G bestimmt: 22,63±0,19 kcal mol–1. –3,00±0,65 e. u. und 23,59±±0,05 kcal mol–1. Es wurde festgestellt, daß die Reaktion über die Bildung eines freien Radikals in einem langsamen, geschwindigkeitsbestimmenden Schritt initiiert wird.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号