首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variations in the composition and structure of CoSi2/Si(111) surface layers under Ar+ ion bombardment with subsequent annealing has been studied. It has been demonstrated that nanocluster phases enriched with Si atoms form on the CoSi2 surface at low doses D ≤ 1015 cm–2, and a pure Si nanofilm forms at high doses.  相似文献   

2.
SrBi2Ta2O9(SBT)/LaNiO3(LNO)/Si and SBT/Pt/TiO2/SiO2/Si multilayers were fabricated by pulsed laser deposition. With Pt top electrodes, the measured remanent polarization (2Pr) of Pt/SBT/LNO/Si and Pt/SBT/Pt/TiO2/SiO2/Si capacitors was 6.5 C/cm2 and 5.2 C/cm2, respectively. Using LNO as both bottom electrodes and buffer layers, enhanced non-c-axis crystalline SBT films were induced, which resulted in a 2Pr greater than that of the Pt/SBT/Pt/TiO2/SiO2/Si capacitor. The hysteresis loop of the Pt/SBT/LNO/Si capacitor showed a great external-field-dependent horizontal shift. Using an electron-injection model, this dependence was addressed. The fatigue-free property of the Pt/SBT/LNO/Si capacitor was experimentally established, in that the non-volatile polarization decreased by less than 5% of the initial value after 1.44×109 switching cycles . PACS 77.84.Dy; 68.65.+g  相似文献   

3.
The effect of compensator on optical properties of Ca2Al2SiO7:Eu3+ is systematically investigated by the X-ray powder diffraction, photo-luminescence (PL) properties and lifetime. It is obviously observed that the PL intensity of Eu3+ under 394 nm excitation increases in the order of Ca1.86Eu0.14Al2SiO7 (CAS), Ca1.72Na0.14Eu0.14Al2SiO7 (CASNa) and Ca1.86Eu0.14Al2.14Si0.86O7 (CASAl), the intensity of Eu3+ are 100%, 134%, 184%, and the lifetime of Eu3+ are 0.75 ms, 1.28 ms and 1.39 ms, respectively. A charge compensation model is proposed to explain the changes in the emission intensity and lifetime of Eu3+ in Ca2Al2SiO7 with different compensation methods. PACS 78.55.-m; 61.72.Ji; 61.43.Gt; 42.70.-a; 74.62.Dh  相似文献   

4.
The high efficient antireflective down-conversion Y2O3:Bi, Yb films have been prepared successfully on Si(100) substrates by pulsed laser deposition (PLD) method, Upon excitation of ultraviolet photon varying from 300 to 400 nm, near-infrared emission of Yb3+ was observed for the film, can be efficiently absorbed by silicon (Si) solar cell. Most interestingly, there is a very low average reflectivity 1.46% for the incident light from 300 to 1100 nm. To the best of our knowledge, this is the lowest reflectance for the down-conversion thin films prepared by cost efficient method. The surface topography of the high efficient antireflective films can be controllably tuned through the substrate template regulation by optimizing process parameters. Besides, the results showed that there is a close relationship between luminescent property and morphology of the film. With the change of the surface morphology, the intensity of Bi3+ and Yb3+ emission peaks increase first and then decrease. The obtained results demonstrate that this film can enhance the Si solar cell efficiency through light trapping and spectrum shifting.  相似文献   

5.
In this paper, a facile co-precipitation process for preparing mono-dispersed core–shell structure nanoparticles is reported. The 110 nm SiO2 cores coated with an yttrium aluminum garnet (Y3Al5O12) layer doped with Er3+ were synthesized and the influence of the concentration ratio of [urea]/[metal ions] on the final product was investigated. The structure and morphology of samples were characterized by the X-ray powder diffraction, Fourier transform IR spectroscopy and transmission electron microscopy, respectively. The results indicate that a layer of well-crystallized garnet Y3Al5O12:Er3+ were successfully coated on the silica particles with the thickness of 20 nm. The near infrared and upconversion luminescent spectra of the SiO2@Y3Al5O12:Er3+ powders further confirm that a Y3Al5O12:Er3+ coating layer has formed on the surface of silica spherical particles.  相似文献   

6.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

7.
The photoluminescence properties of a composite material prepared by the introduction of the nanosized phosphor Zn2SiO4:Mn2+ into porous anodic alumina have been investigated. Scanning electron microscopy studies have revealed that Zn2SiO4:Mn2+ particles are uniformly distributed in 70% of the volume of the pore channels. The samples exhibit an intense luminescence in the range of 2.3–3.0 eV, which corresponds to the emission of different types of F centers in alumina. After the formation of Zn2SiO4:Mn2+ nanoparticles in the pores, an intense photoluminescence band is observed at 2.4 eV due to the 4T16A1 electronic transition within the 3d shell of the Mn2+ activator ion. It has been found that the maximum of the photoluminescence of Zn2SiO4:Mn2+ xerogel nanoparticles located in the porous matrix is shifted to higher energies, and the luminescence decay time decreases significantly.  相似文献   

8.
The phase chemical composition of an Al2O3/Si interface formed upon molecular deposition of a 100-nm-thick Al2O3 layer on the Si(100) (c-Si) surface is investigated by depth-resolved ultrasoft x-ray emission spectroscopy. Analysis is performed using Al and Si L2, 3 emission bands. It is found that the thickness of the interface separating the c-Si substrate and the Al2O3 layer is approximately equal to 60 nm and the interface has a complex structure. The upper layer of the interface contains Al2O3 molecules and Al atoms, whose coordination is characteristic of metallic aluminum (most likely, these atoms form sufficiently large-sized Al clusters). The shape of the Si bands indicates that the interface layer (no more than 10-nm thick) adjacent to the substrate involves Si atoms in an unusual chemical state. This state is not typical of amorphous Si, c-Si, SiO2, or SiOx (it is assumed that these Si atoms form small-sized Si clusters). It is revealed that SiO2 is contained in the vicinity of the substrate. The properties of thicker coatings are similar to those of the 100-nm-thick Al2O3 layer and differ significantly from the properties of the interfaces of Al2O3 thin layers.  相似文献   

9.
The Sc2SiO5 single crystals doped with 0.001 at.% of the 143Nd3+ ion were studied by continuous-wave and pulse electron paramagnetic resonance methods. The g-tensors and hyperfine structure tensors for two magnetically non-equivalent Nd ions were obtained. The spin–spin and spin–lattice relaxation times were measured at 9.82 GHz in the temperature range from 4 to 10 K. It was established that three relaxation processes contribute to the spin–lattice relaxation processes. There are one-phonon spin–phonon interaction, two-phonon Raman interaction and two-phonon Orbach–Aminov relaxation processes. It was established that spin–spin relaxation time is of the same magnitude for neodymium ion doped in Sc2SiO5 and in Y2SiO5.  相似文献   

10.
The photoluminescence of Zn2SiO4:Mn2+ ceramics with a particle size of 120 ± 10 nm, which is excited in the range of 3.5–5.8 eV and subjected to synchrotron radiation with photon energies of up to 20 eV, is investigated. Nanoscale Zn2SiO4:Mn2+ ceramics possesses intense luminescence with a maximum of 2.34 eV, the position and half-width of the band are independent of the excitation energy. It is found that the photoluminescence at 2.34 eV decays nonexponentially upon ultraviolet excitation. In the case of nanoscale ceramics is irradiated by vacuum ultraviolet, an additional photoluminescence-excitation channel is likely to occur due to interaction of band states and intrinsic vacancy-like defects of the Zn2SiO4 matrix.  相似文献   

11.
The emission and excitation spectra of Gd2SiO5∶Eu3+ were investigated using the VUV beam line of the Beijing Synchrotron Radiation Facility (BSRF). The experimental results were discussed in the frame of visible quantum cutting process involved in Gd3+−Eu3+ system. Upon direct excitation into the6G J states of Gd3+, two visible photon emissions from Eu3+ were observed. Cursory evaluation proved that Gd2SiO5∶Eu3+ is an efficient visible quantum cutter.  相似文献   

12.
A series of solid solutions with a general formula of Ca2(1-x)Sr2xAl2SiO7:Eu2+ were synthesized by a high temperature solid state reaction. The structure, diffuse reflection spectra, photoluminescence spectra, color-coordinate parameters and lifetimes of phosphors were investigated. XRD results show that Ca2Al2SiO7 is totally miscible with Sr2Al2SiO7. These solid solution phosphors show a broad excitation band of 350–450 nm that matches well with the output lights of near-UV LEDs and tunable emission from bluish green to yellowish green. These optical properties originate from the 4f7–4f65d transition of Eu2+ ions. The crystal field strength was considered to be tailed by controlling the host composition, which leads to the shift of absorption band and emission band, and the varying of color coordinates. PACS  78.55.-m; 42.70.-a; 61.05.C-  相似文献   

13.
Magnetite polycrystalline films are grown by variously oxidizing a Fe film on the Si(111) surface covered by a thin (1.5 nm) SiO2 layer. It is found that defects in the SiO2 layer influence silicidation under heating of the Fe film. The high-temperature oxidation of the Fe film results in the formation of both Fe3O4 and iron monosilicide. However, the high-temperature deposition of Fe in an oxygen atmosphere leads to the growth of a compositionally uniform Fe3O4 film on the SiO2 surface. It is found that such a synthesis method causes [311] texture to arise in the magnetite film, with the texture axis normal to the surface. The influence of the synthesis method on the magnetic properties of grown Fe3O4 films is studied. A high coercive force of Fe3O3 films grown by Fe film oxidation is related to their specific morphology and compositional nonuniformity.  相似文献   

14.
Pb(Zr0.52Ti0.48)O3 (PZT)/LaNiO3 (LNO) thin films with highly (100) out of plane orientation were produced on SiO2/Si(100) and alkaline earth aluminosilicate glass substrates by pulsed laser deposition (PLD). Orientations of both PZT and LNO films were evaluated using X-ray diffraction. The pure (100)-oriented PZT/LNO films were obtained under optimized deposition conditions. Time of flight-secondary ion mass spectrometry analysis showed that LNO could effectively block interdiffusion between the PZT films and the substrates. Fairly smooth surfaces of the PZT films with roughness of about 4 nm were observed using an atomic force microscope. Cross sectional examination revealed that the films grew in columnar grains. The PZT films grown on both SiO2/Si and glass substrates demonstrated very good ferroelectric characteristic at room temperature with remnant polarization of up to 26 μC/cm2. PACS 79.20.DS; 77.84.DY; 78.70.Ck  相似文献   

15.
Nano-constriction array in La0.67Sr0.33MnO3 film was fabricated by using ion beam etching masked by a monolayer of packed and ordered array of SiO2 microspheres. Nano-constrictions of around 50 nm in width were fabricated. The low field magnetoresistance (LFMR) exhibited in the samples were observed to be current dependent and the I-V characteristics of the film were found to be nonlinear. These observations were attributed to the co-existence of the ferromagnetic regions and the nano-constricted region of weakened ferromagnetic coupling where Mn3+-O-Mn4+ bond were distorted due to the ion beam bombardment. The spin polarized bias current would strengthen local ferromagnetic coupling when passing through this nano-constricted regions. This current effect is relatively large comparing to the external magnetic field to the drop of resistance.  相似文献   

16.
The effect of preliminary low-energy (~1 keV) and low-dose (~1012–1014 cm–2) ion bombardment on the initial stages of growth of Si films on a CaF2/Si surface is investigated. Ordered nanocrystal phases (thickness less than 5–6 monolayers) and homogeneous epitaxial nanofilms (thickness more than 8–10 monolayers) of silicon are shown to be formed after annealing.  相似文献   

17.
This article demonstrates the first reported successful synthesis of Mg2SiO4 nanowires. We have thermally heated Au-coated Si substrates, using a quartz tube with its inner surface pre-coated with MgO nanostructures. We have characterized the sample morphologies by using scanning electron microscopy and transmission electron microscopy (TEM). X-ray diffraction analysis and high-resolution TEM observation coincidentally revealed that the nanowires were crystalline with an orthorhombic Mg2SiO4 structure. We have discussed the possible growth mechanism of Mg2SiO4 nanowires. PACS 81.07.-b; 81.05.Zx; 61.10.Nz; 68.37.Hk; 68.37.Lp  相似文献   

18.
For the fist time in Y2SiO5:Pr3+ nanocrystals, the ordered stage in the 1 D 2 luminescence decay curves for Pr3+ ions has been observed at anomalously low doped ion concentration (0.5 at %). This effect is caused by preferred location of the activator ions in the near-surface layer of the nanocrystal that provides the relaxation of elastic tension arising due to the difference of ionic radii of Pr3+ and Y3+ ions. Concentration quenching of Pr3+ luminescence is caused by the cooperative cross-relaxation.  相似文献   

19.
The results of the theoretical investigation of the surface electronic structure of A2VB3VI compounds containing topologically protected surface states are reported. The ideal Bi2Te3, Bi2Se3, and Sb2Te3 surfaces and surfaces with an absent external layer of chalcogen atoms, which were observed experimentally as monolayer terraces, have been considered. It has been shown that the discrepancy between the calculated Fermi level and the value measured in the photoemission experiments can be attributed to the presence of the “dangling bond” states on the surface of the terraces formed by semimetal atoms. The fraction of such terraces on the surface has been estimated.  相似文献   

20.
The dependences of the emission and fragmentation of clusters sputtered by Xe+ ions from the surface of Si n O m + on the oxygen pressure near the bombarded surface are studied using secondary ion mass spectrometry. It is shown that the process of Si n O m + cluster formation under ion bombardment can be described within the framework of the mechanism of combinatorial synthesis by taking into account the mutual reversibility of the reactions of formation and unimolecular decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号