首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The results of quantum chemical calculations of the profiles of intracell potential relief at the elementary disordering act in various parts of the lattice of a crystallite LaF3 of the size 3.5 × 2.0 × 2.2 nm containing 1200 ions have been presented. For dielectric and highly conductive (HC) phases it has been established that the potential barriers, which limit the movement in the anion sublattice, in the central part of the nanocluster are about 1.5?2.0 times higher than the potential barriers on its faces. It has been shown that for this reason, the efficiency of thermally stimulated motion in the anion sublattice on the faces of a crystallite is several orders of magnitude greater than the efficiency of the movement of fluorine ions in its central regions.  相似文献   

2.
Quantum chemistry calculations of the intracrystalline potential relief in the nanolattice of LaF3 superionic crystal that contains 1200 ions and measures 3.5 × 2.0 × 2.2 nm along the x, y, and z axis, respectively, have been performed. Using the MOPAC 2012 program package, the potential relief profile has been simulated in the central part of the nanolattice for an elementary act of disordering in the lowest melting sublattice of F1 ions. It has been found that the height E m of barriers that prevent the motion of F1 in the dielectric phase of LaF3 crystal equals 0.37 eV and decreases to 0.15 eV in the superionic state. In addition, activation energy E a of F1 sublattice disordering in the dielectric and superionic states is equal to 0.16 and 0.04 eV, respectively. The profiles of the potential relief calculated on the xy and xz faces of the LaF3 3D nanolattice for the case when an F1 ion moves along the x crystal axis in the dielectric state are presented. The corresponding energy barriers are 1.5–2.0 times lower than those at the center of the LaF3 nanlattice.  相似文献   

3.
PrF3 and LaF3 nanoparticles were synthesized by the hydrothermal method. The size distribution of these nanoparticles in the colloidal solution produced was studied by photon correlation spectroscopy. The mean diameter of the nanoparticles was 42 ± 1 nm. During the study of the toxicity of the nanoparticles, the mixture of a colloidal solution of the nanoparticles with cells to be studied was irradiated by 30-mW continuous lasers at wavelengths of 532 and 473 nm. The concentration of salmonella cells in normal saline was 106 cell/mL, while that of nanoparticles was 0.1 g/L. The cell survival percentage was 39, 34, and 20% for the irradiation times of 5, 10, and 15 min, respectively, at an optimal laser radiation power density of 0.4 W/cm at a wavelength of 532 nm. It was ascertained that LaF3 nanoparticles do not possess the property of photoinduced toxicity and the apoptosing effect. Moreover, the property of photoinduced toxicity is not shared by microparticles, in contrast to nanoparticles.  相似文献   

4.
The electrical conductivity σa and permittivities ?a, ?b, and ?c of a LiCuVO4 single crystal have been measured along the a, b, and c crystallographic axes, respectively, in the temperature range 300–390 K at a frequency of 103 Hz. The temperature dependences σ(T) and ?(T) were found to be typical for superionics.  相似文献   

5.
The frequency (ν = 10?1–107 Hz) dependences σ(ν) of the conductivity of single crystals of the Pb0.67Cd0.33F2 superionic conductor with the fluorite-type structure (CaF2) in the temperature range of 132–395 K have been studied. The dependences σ(ν) have been discussed in the framework of the hopping relaxation of ionic carriers, which are mobile anions F?. From experimental curves σ(ν), the direct-current (dc) conductivity σdc and the average charge carrier hopping frequency νh have been determined. This has made it possible to calculate the charge carrier mobility μmob and charge carrier concentration n mob in these crystals. At room temperature (293 K), the electrical parameters are σdc = 1.6 × 10?4 S/cm, νh = 2.7 × 107 Hz, μmob = 2.0 × 10?7 cm2/(s V), and n mob = 5.1 × 1021 cm?3.  相似文献   

6.
The optical spectra and electric conductivity of LaF3 crystals doped with 0.01, 0.1, and 0.3 mol % YbF3, where Yb was partly or completely recharged to the divalent state, are studied. The long-wavelength absorption band of 370 nm is caused by electrons transitioning from state 4f 14 to the level of anion vacancies. The remaining bands at 300–190 nm are caused by 4f 14–5d 14f 13 transitions in Yb2+. The bulk electric conductivity and peaks of the dielectric losses of LaF3–Yb2+ crystals are caused by Yb2+–anion vacancy dipoles. The activation energy of the reorientation of Yb dipoles is 0.58 eV. The optical and dielectric properties of Yb2+ centers are compared to those of Sm2+ and Eu2+ centers studied earlier in LaF3 crystals.  相似文献   

7.
The absorption spectra of LaF3 crystals, both pure and doped with rare-earth fluorides (YF3, CeF3, NdF3, PrF3, SmF3, EuF3, GdF3, TbF3, DyF3, HoF3, ErF3, TmF3, YbF3, and LuF3) have been investigated. All these impurities can be separated into two groups with respect to the shape of the absorption spectra of irradiated crystals. The spectra of the crystals doped with Nd, Sm, Tm, and Yb exhibit, along with 200-nm hole band F3-, weak bands due to RE2+-anion vacancy centers. The spectra of LaF3 crystals with Y, Ce, Pr, Gd, Tb, Dy, Ho, Er, and Lu impurities exhibit, along with the hole-center bands (F3- at 200 nm and VkA at 320 nm), bands of comparable intensity, which can be attributed to RE3+F centers. This conclusion is confirmed by preliminary quantum-chemical calculations and the estimation of the levels location in the energy-band diagram.  相似文献   

8.
We observe stimulated low-frequency Raman scattering (SLFRS) caused by laser pulse interaction with acoustic vibrations of nanoparticles in water suspensions of LaF3 nanoparticles. We show that frequency shifts of the scattering correspond to the eigenfrequencies of nanoparticles vibrations. LaF3 nanoparticles were synthesized in the presence of glycine by a double jet precipitation technique at various initial concentrations of reagents. We investigate the morphologies and particle sizes as well as size distributions of the particles prepared using transmission electron microscopy (TEM) and dynamical light scattering (DLS). In view of the absorption spectroscopy, we show that the reaction system components and products have no absorption in the visible region, including λ = 694.3 nm. From the luminescence spectroscopy, we find also that they do not emit at λ = 694.3 nm excitation.  相似文献   

9.
Experimental data concerning superradiant emission from the LaF3 medium doped with impurity praseodymium ions are presented in the cases of a free medium and when the medium is placed into an optical resonator. The spike structure of superradiance is registered and studied. When the medium is placed inside a cavity, a new channel of energy removal by superradiance related to the cavity mode appears; the old noncavity channels are preserved. The duration of superradiance in the cavity channel is decreased, and regular modulation arises. These peculiarities of superradiance induced by the presence of an optical resonator are explained.  相似文献   

10.
A molten salt route to LaF3:Eu3+ nanoplate with tunable size was developed and the products were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and high-resolution TEM (HR-TEM). It is found that the nanoplates with different sizes (ca. 46, 20, and 12 nm) could be obtained when the molar ratio of the reagents NH4F and La(NO3)3 · 6H2O was adjusted. The possible formation process of reaction was discussed, and the reasonable mechanism of size controlling was also proposed. Furthermore, the luminescent properties of all the samples with different sizes and doping levels were investigated at room temperature.  相似文献   

11.
The phase behaviour of K3H(SeO4)2 (TKHSe) above room temperature has been studied by differential scanning calorimetric (DSC), thermogravimetric analysis (TGA), simultaneous thermogravimetric and mass spectroscopy analysis (TG-MS), impedance spectroscopy (IS) and X-ray powder diffraction (XRD). Our results show that the previously claimed superionic phase transition in TKHSe at around 388 K (114.85 °C) is also the onset temperature of a slow thermal dehydration that occurs at reaction sites distributed over the surface of the crystal. That is, we propose that the TKHSe undergoes simultaneously a superionic phase transition and a decomposition process with a very slow reaction rate that is evident when the sample is pulverized to fine powder, both starting at the same temperature. As a matter of fact, we observe a decrease of the magnitude of the dc-conductivity on successive thermal runs in powdered sample attributed to sample decomposition that starts at the surface of the TKHSe grains, but the jump in conductivity is only a consequence of the order–disorder transition in the TKHSe phase that remains inside the grains.  相似文献   

12.
1H and 19F spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10–400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.  相似文献   

13.
The magnetic properties of an easy-axis trigonal DyFe3(BO3)4 antiferromagnetic crystal have been theoretically studied. On this basis, recent experimental data [1] on the field and temperature dependences of magnetization and the temperature dependence of the initial magnetic susceptibility for three crystallographic directions in this antiferromagnet have been interpreted. The characteristics of the trigonal crystal field for the rare earth ion and the parameters of the Fe-Fe and Fe-Dy exchange interactions are determined. Limitations imposed by features of the magnetic characteristics (anisotropic magnetization in the three crystallographic directions, Schottky-type anomalies in the magnetic susceptibility, etc.) on the possible splitting of the ground-state multiplet in the crystal field and the splitting of the lowest doublet due to the f-d interaction for Dy3+ ions are established.  相似文献   

14.
Ferroelectric and dielectric properties of bilayered ferroelectric thin films, SrBi4Ti4O15 grown on Bi4Ti3O12, were investigated. The thin films were annealed at 700°C under oxygen atmosphere. The bilayered thin films were prepared on a Pt(111)/Ti/SiO2/Si substrate by a chemical solution deposition method. The dielectric constant and dielectric loss of the bilayered thin films were 645 and 0.09, respectively, at 100 kHz. The value of remnant polarization (2P r) measured from the ferroelectric thin film capacitors was 60.5 μC/cm2 at electric field of 200 kV/cm. The remnant polarization was reduced by 22% of the initial value after 1010 switching cycles. The results showed that the ferroelectric and dielectric properties of the SrBi4Ti4O15 on Bi4Ti3O12 ferroelectric thin films were better than those of the SrBi4Ti4O15 grown on a Pt-coated Si substrate suggesting that the improved properties may be due to the different nucleation and growth kinetics of SrBi4Ti4O15 on the c-axis-oriented Bi4Ti3O12 layer or on the Pt-coated Si substrate.  相似文献   

15.
Bi3.25La0.75Ti3-yNbyO12 (y=0.0, 0.03, 0.09, 0.15, 0.21) were synthesized using the solid-state reaction method. The effects of Nb doping on ferroelectric properties were studied through dielectric and P-E measurements. The value of Pr increases with increasing Nb content. Bi3.25La0.75Ti3-yNbyO12 ceramics exhibit a maximum remanent polarization of Pr=27 μC/cm2 at an Nb content of y=0.09. These results indicate that Nb doping can improve the ferroelectric properties of BLT ceramics. The Curie temperature, Tc, decreased with increasing Nb-content, and the ferroelectric phase transition of BLTNy is a second-order transition without thermal hysteresis. PACS 77.55.+f; 77.80.-e; 77.22.Jp  相似文献   

16.
The magnetic properties of (CH3NH3)2CuBr4 quasi-two-dimensional crystals were studied experimentally. The magnetic-field and temperature dependences of magnetization were measured for various magnetic field orientations relative to the crystallographic axes. Possible reasons for features in the behavior of the magnetization are discussed.  相似文献   

17.
The thermal conductivity of three single-crystal samples of the quasi-one-dimensional spin system of LiCuVO4 with different concentrations of defects (primarily, vacancies on the lithium sublattice) was measured along the crystallographic a axis (along the nonmagnetic lithium chains) in the temperature interval 5–300 K. An increase in thermal conductivity from that of the crystal lattice was revealed for T>150–200 K. This increase can be accounted for only by assuming LiCuVO4 to be a superionic conductor. This assumption was confirmed by measuring its electrical conductivity in the temperature interval 300–500 K. Li+ ions move over vacancies on the lithium sublattice (conducting channels) and act as charge carriers in LiCuVO4. It is shown that LiCuVO4 is a fairly good superionic conductor with application potential.  相似文献   

18.
The results of experimental and numerical investigations of electromagnetically induced transparency in a Pr3+:LaF3 crystal have been presented. A spectrally isolated Λ system has been made of a specially prepared medium of an ensemble of particles with an inhomogeneous width less than the hyperfine splitting of both upper and lower operating levels. A considerable increase in the transmittance with respect to an unprepared medium has been demonstrated. It has been shown that, under the experimental conditions, the transmittance is limited by the apparatus (spread of the transmission peak by the instrumental linewidth specified by the probe pulse length).  相似文献   

19.
According to the results of calorimetric and structural studies, the Fm{ie1202-1}m phase in K2NaMoO3F3 remains stable at least to 100 K. No ferroelectric transformation assumed earlier has been revealed in a series of Rb2KMoO3F3 samples prepared using various technologies. Only a phase transition of nonferroelectric origin has been observed near 195 K, and its thermodynamic characteristics have been determined. An analysis of the stability of the cubic structure of molybdenum fluorine-oxygen elpasolites-cryolites has been performed in the framework of the hypothesis on strengths of interatomic bonds. The barocaloric effect in Rb2KMoO3F3 has been estimated.  相似文献   

20.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号