首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines the properties of polyvinyl alcohol (PVA)/starch film containing glycerol as a plasticizer under exposure to different nitrogen ion fluence. The prepared PVA/starch blend was irradiated with ion fluence from 3 × 1017 to 12 × 1017 ions.cm−2. From FTIR, the ion beam irradiation attack and weakens the C–H bond in PVA/starch blend. From XRD findings, the crystallite size of the blend decreased at 3 × 1017 ions/cm2 while it increased at higher fluence up to 9 × 1017 ions/cm2. This indicates the degradation of the blend at low ion fluence compared to crosslinking at high ion fluence. Also, the optical bandgap of the blend was decreased with an increase in ion fluence. Furthermore, the effect of N+ ions on some optical dispersion parameters is studied. The thermal stability of the PVA/starch blend shows a decrease in thermal stability upon irradiation with 3 × 1017 ions/cm2 compared to higher thermal stability at higher doses up to 9 × 1017 ions/cm2.  相似文献   

2.
The present work is devoted to investigation of optical absorption in pure and neodymium-doped YAlO3 (YAP) single crystals in the spectral range 0.2–1.1 μm induced by the influence of 12C ions irradiation with energy 4.50 MeV/u (MeV per nucleon) and a fluence 2 × 109 cm?2 or of 235U ion irradiation with energy 9.35 MeV/u and a fluence 5 × 1011 cm?2. The induced absorption in the case of 12C ions irradiation is caused by recharging of point growth defects and impurities under the radiation influence. After irradiation by 235U ions with fluence 5 × 1011 cm?2 the strong absorption rise is probably caused by contribution of the lattice destruction as a result of heavy ion bombardment.  相似文献   

3.
The effect of electron irradiation with energy of 30?keV and fluence up to 7?×?1016?cm?2 on diffuse reflection spectra in situ of coatings based on ZnO powders unmodified and modified with zirconium dioxide and aluminum oxide nanopowders was investigated. The higher radiation stability of coatings based on modified pigments in comparison to unmodified pigments has been established. A significant recovery of the reflection spectra of irradiated coatings after exposure to residual vacuum and air was shown.  相似文献   

4.
A. K. Nath  A. Kumar 《Ionics》2014,20(12):1711-1721
Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions cm?2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5?×?1011 ions cm?2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5?×?1011 ions cm?2 and subsequently decrease. Optimum ionic conductivity of 1.5?×?10?2 S cm?1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5?×?1011 ions cm?2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.  相似文献   

5.
The samples of polypropylene (PP) have been irradiated with 120 MeV 64Cu9+ and 70 MeV 12C5+ ion beams, with the fluence ranging from 1 × 1013 to 1 × 1011 ions/-cm−2. UV-VIS and FTIR techniques have been used to study the chemical and optical properties of these irradiated polymers. UV spectra revealed that the optical-gap energy decreases by 54 % with copper ion irradiation at the fluence of 1 × 1013 ions/cm2, whereas at the same fluence, carbon beam decreases the optical-gap energy by 20%. FTIR analysis of ion irradiated samples revealed the presence of -OH, C = O and C = C bonds. Alkyne formation has been observed only in the case of copper ion irradiation.   相似文献   

6.
In this paper, we present the result of TiN nanocrystalline deposition on SS316L, using a 4 kJ plasma focus (PF) device for 10, 20, and 30 focus shots. The effect of different number of focus shots on micro-structural changes of thin film is characterized by field emission scanning electron microscope. Existence of grains in different size confirms the formation of TiN nanocrystals on the surface of SS316L substrate. X-ray diffraction (XRD) reveals the formation of a nanocrystalline titanium nitride coating on the surface of SS316L samples. The crystalline size of TiN obtained from XRD data is strongly dependent on the number of focus shots. Thickness of the elements found on the surface of the treated sample that obtain by Rutherford backscattering spectroscopy (RBS) analysis is in the range of 150×1015?200×1015 atoms/cm2. All the existence elements in the coated samples are identified by Particle Induced X-ray Emission (PIXE) spectra. Investigation on the corrosion resistance of TiN coatings was performed using an electrochemical potentiodynamic polarization. Our results suggest that TiN nanocrystalline implantation with proper ion fluences using PF can significantly improve the corrosion resistance of SS316L.  相似文献   

7.
The radiation hardness of three types of BaTiZrO3 coatings obtained by synthesis from the powder mixtures BaTiO3 + ZrO3, BaCO3 + TiO2 + ZrO3 (micron size), and BaCO3 + TiO2 + ZrO3 (nanopowder) deposited by the detonation method on metal substrates is investigated. The high radiation resistance of all types of coatings to the action of electrons with an energy of 30 keV and a fluence of up to 4 × 1016 cm–2 is established in measurements of the diffuse reflection spectra in vacuum at the place of irradiation (in situ).  相似文献   

8.
Polycarbonate/polystyrene bilayer films prepared by solvent-casting method were irradiated with 55 MeV carbon ion beam at different fluences ranging from 1×1011 to 1×1013 ions cm?2. The structural, optical, surface morphology and dielectric properties of these films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, optical microscopy and dielectric measurements. The XRD pattern shows that the percentage of crystallinity decreases while inter-chain separations increase with ion fluence. UV–visible spectroscopy shows that the energy band gap decreases and the number of carbon atoms in nanoclusters increase with the increase in ion fluences. The refractive index is also found to decrease with the increase in the ion fluence. Optical microscopy shows that after irradiation polymeric bilayer films color changes with ion fluences. The FTIR spectra evidenced a very small change in cross-linking and chain scissoring at high fluence. Dielectric constant decreases while dielectric loss and AC conductivity increase with ion fluences.  相似文献   

9.
Ni/SiO2/Si MOS structures were fabricated on n-type Si wafers and were irradiated with 50 MeV Li3+ ions with fluences ranging from 1×1010 to 1×1012 ions/cm2. High frequency CV characteristics are studied in situ to estimate the build-up of fixed and oxide charges. The nature of the charge build-up with ion fluence is analyzed. Defect levels in bulk Si and its properties such as activation energy, capture cross-section, trap concentration and carrier lifetimes are studied using deep-level transient spectroscopy. Electron traps with energies ranging from 0.069 to 0.523 eV are observed in Li ion-irradiated devices. The dependence of series resistance, substrate doping and accumulation capacitance on Li ion fluence are clearly explained. The study of dielectric properties (tan δ and quality factor) confirms the degradation of the oxide layer to a greater extent due to ion irradiation.  相似文献   

10.
In this paper, we present the impact of swift heavy ion beam irradiation on the structural, optical and electronic properties of SnO2 thin films. Thin films were deposited using the pulsed laser deposition technique on Al2O3 substrates. Atomic force microscopy, X-ray diffraction, UV–visible absorption and temperature-dependent resistivity measurements were performed to explore the morphological, structural, optical and electronic properties of the as-deposited and irradiated samples. The peak intensity of the (200) peak was found to decrease monotonously with increasing irradiation fluence. The band gap energy of the 1×1011 ion/cm2 irradiated sample was found to increase. The electrical resistivity of the samples showed a continuous increase with the irradiation fluence.  相似文献   

11.
Experimental results on atomic-spatial investigation of radiative defect formation in surface layers of materials, initiated by neutron bombardment (of Pt, E > 0.1 MeV) and ion implantation (in Cu3Au: E = 40 keV, F = 1016 ion/m2, j = 10?3 A/cm2), are considered. Quantitative estimates are obtained for the size, shape, and volume fraction of cascades of atomic displacements formed under various types of irradiation in the surface layers of the materials. It is shown that the average size of radiation clusters after irradiation of platinum to a fast neutron fluence of 6.7 × 1022 m?2 (E > 0.1 MeV) is about 3.8 nm. The experimentally established average size of a radiation cluster (disordered zone) in the alloy after ion bombardment is 4 × 4 × 1.5 nm.  相似文献   

12.
Low-temperature (40 K) photoluminescence (PL) measurements were used to follow the defect formation induced in the 4H-SiC epitaxial layer by irradiation with 200 keV H+ and 800 keV C+ in the fluence range of 5×109–3.5×1012 ions/cm2. After irradiation, the PL spectra show the formation of some sharp lines, called “alphabet lines”, located in the wavelength range of 425–443 nm, due to the recombination of excitons at structural defects induced by ion beams. The analysis of luminescence line intensity versus ion fluence allows us to mark two different groups of peaks, namely the P1 group (e, f and g lines) and the P2 group (a, b, c and d lines). The normalised yield of P1 group lines increases with ion fluence and reaches a maximum value, while the normalised yield of P2 group lines exhibits a threshold fluence and then increases until a saturation value is reached. These different trends indicate that, while the P1 group lines are related to the primary defects created by ion beams (interstitial defects, vacancies), the P2 group lines can be associated with some complex defects (divacancy, antisites). The trends are similar for irradiation with H+ and C+ ions; however, the defect formation occurs in the fluence range of 5×109–1011 ions/cm2 for C+ irradiation and 1011–4×1012 ions/cm2 for H+ irradiation. Taking into account the different values of energy deposited in elastic collision, a dependence on the ion type was found: the C+ ion results in being less effective in defect production as a higher defect recombination occurs inside its dense cascade.  相似文献   

13.
Makrofol-N polycarbonate was irradiated with carbon (70 MeV) and copper (120 MeV) ions to analyze the induced effects with respect to optical and structural properties. In the present investigation, the fluence for carbon and copper beams was kept in the range of 1×1011– 1×1013 ions/cm2 to study the swift heavy ion induced modifications. UV–VIS, FTIR and XRD techniques were utilized to study the induced changes. The analysis of UV–VIS absorption studies revealed that the optical energy gap was reduced by 17% on carbon irradiation, whereas the copper beam leads to a decrease of 52% at the highest fluence of 1×1013 ions/cm2. The band gap can be correlated to the number of carbon atoms, N, in a cluster with a modified Robertson's equation. In copper (120 MeV) ions irradiated polycarbonate, the number of carbon atoms in a cluster was increased from 63 to 269 with the increase of ion fluence from 0 to 1×1013 ions/cm2, whereas N is raised only up to 91 when the same polymer films were irradiated with carbon (70 MeV) ions under similar conditions. FTIR analysis showed a decrease in almost all characteristic absorption bands under irradiation. The formation of hydroxyl (? OH) and alkene (C?C) groups were observed in Makrofol-N at higher fluence on irradiation with both types of ions, while the formation alkyne end (R? C≡ CH) group was observed only after copper ions irradiation. The radii of the alkyne production of about 3.3 nm were deduced for copper (120 MeV) ions. XRD measurements show a decrease in intensity of the main peak and an increase of the average intermolecular spacing with the increase of ion fluence, which may be attributed to the structural degradation of Makrofol-N on swift ion irradiation.  相似文献   

14.
The effects of ion-beam bombardment on the physical and chemical properties of poly(allyl diglycol carbonate) (CR-39) polymer have been investigated. CR-39 samples were bombarded with 320 keV Ar and 130 keV He ions at fluences ranging from 1 × 1013 to 2 × 1016 ions/cm2. The nature and extent of radiation damage induced were studied by UV–VIS spectrometry, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, as well as Vickers' hardness measurements. In addition, the effect of ion fluence on the wetting properties of ion-beam bombarded CR-39 polymer was determined by measuring the contact angle for distilled water. UV–VIS spectra of bombarded samples reveal that the optical band gap decreases with increasing ion fluence for both Ar and He ions. In the FTIR spectra, changes in the intensity of the bands on irradiation relative to pristine samples occurred with the appearance of new bands. XRD analyses showed that the degree of ordering of the CR-39 polymer is dependent on the ion fluence. Changes of surface layer composition and an increase in the number of carbonaceous clusters produced important change in the energy gap and the surface wettability. The surface hardness increased from 10.54 MPa for pristine samples to 28.98 and 23.35 MPa for samples bombarded with Ar and He ions at the highest fluence, respectively.  相似文献   

15.
Abstract

Au/n-GaAs Schottky Barrier Diodes (SBDs) have been fabricated on LEC grown silicon doped (100) GaAs single crystals. The SBDs were irradiated using high energy (120 MeV) silicon ion with fluences of 1 × 10 11 and 1 × 1012 ions/cm2. Current-Voltage (I-V) characteristics of unirradiated and irradiated diodes were analyzed. The change in the reverse leakage current increases with increasing ion fluence. This is due to the irradiation induced defects at the interface and its increase with the fluence. The diodes were annealed at 573 and 673 K. to study the effect of annealing. The rectifying behavior of the irradiated (fluence of 1 × 1012 ions/cm12) SBDs improves upon as the annealing temperature increases and is attributed to the in situ self-annealing during irradiation. Scanning Electron Microscopic analysis was carried out on the irradiated samples to delineate the projected range and to observe defects.  相似文献   

16.
The variation of the temperatures of martensitic transformations and the rate of radiation damage in TiNi alloys were studied upon irradiation with reactor neutrons. The irradiation was performed at temperatures of 120 and 335 K. In the process of irradiation, electrical resistance of the alloys was measured continuously and thermal cycling through the temperature range of martensitic transformations was carried out. The transformation temperatures were shown to decrease at different rates with increasing irradiation fluence. The electrical resistance increases linearly with increasing neutron fluence to 6.7×1018 cm?2 irrespective of the irradiation temperature. Deviation from a linear dependence is only observed when the irradiation leads to a change in the phase state of the alloy. The rate of the resistance increase only slightly depends on the irradiation temperature. In martensite, it is greater by a factor of 2–4 than that in austenite. Mechanisms of irradiation-induced modification of the structure of TiNi alloys that explain the experimental data obtained are discussed.  相似文献   

17.
The self-standing films of polymethyl methacrylate (PMMA) were irradiated under vacuum with 50?MeV lithium (Li3+) and 80?MeV carbon (C5+) ions to the fluences of 3?×?1014, 1?×?1015, 1?×?1016 and 1?×?1017 ions µm?2. The pristine and irradiated samples of PMMA films were studied by using ultraviolet–visible (UV–Vis) spectrophotometry, Fourier transform infrared, X-ray diffractrometer and atomic force microscopy. With increasing ion fluence of swift heavy ion (SHI), PMMA suffers degradation, UV–Vis spectra show a shift in the absorption band from the UV towards visible, attributing the formation of the modified system of bonds. Eg and Ea decrease with increasing ion fluence. The size of crystallite and crystallinity percentage decreases with increasing ion fluence. With SHI irradiation, the intensity of IR bands and characteristic bands of different functional groups are found to shift drastically. The change in (Eg) and (N) in carbon cluster is calculated. Shifting of the absorption band from the UV towards visible along with optical activity and as a result of irradiation, some defects are created in the polymer causing the formation of conjugated bonds and carbon clusters in the polymer, which in turn lead to the modification in optical properties that could be useful in the fabrication of optoelectronic devices, gas sensing, electromagnetic shielding and drug delivery.  相似文献   

18.
316 stainless steel has been irradiated with 5 MeV Cu ions to a fluence of 2 × 1016 ions/cm2 at 500°C. Transmission electron microscopy of this sample reveals that 6 × 1015 voids/cm2 of average diameter equal to 180 Å were produced. A method for correlating the fluence of ions with equivalent neutron fluences is described. This method predicts that the Cu bombardment in this study should produce a microstructure similar to that found in steel irradiated with 2–5 × 1122 neutrons/cm2. A comparison of the ion produced voids with those found after previous neutron irradiation experiments confirms this prediction.  相似文献   

19.
The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1×1015 cm?2. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using the UV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energy values showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbon atoms per cluster was also observed.  相似文献   

20.
The present work aims to investigate the pre- and post-effect of 50 MeV Li3+ ion irradiation at a fluence of 5×1013 ions/cm2 on the dielectric properties of Y3+xFe5?xO12, x=0.0, 0.2, 0.4 and 0.6, garnet system over broad temperature, 300–673 K, and frequency, 100 Hz–13 MHz, ranges. Thermal variation of ac resistivity measurements suggests that the mechanism responsible for conduction in the system is polaron hopping. The observed modifications in dielectric properties after swift heavy ion irradiation are mainly due to the modifications of the metal–insulator contacts due to radiation damage-induced disorder and irradiation-induced point/cluster of defects in the material and also compressive strain generated in the lattice structure. The electric modulus presentation and the complex impedance spectral analysis have been employed to study the relaxation process. The YFeO3 phase is found to be irradiation hard phase as compared with the garnet phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号