首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
If we define, roughly, linear symmetries as those symmetries which lead to linear relationships among scattering amplitudes, we are then faced with the question whether we already know all possible types of linear symmetries or whether there are new types of symmetries which we can yet discover. We argue that for an important class of these symmetries there can be no new types of symmetries, except for one which we call scaling symmetry. We also attempt to point out all types of symmetries which other classes have. In analyzing the above question we are led to a simple and consistent formalism for describing linear symmetries which takes linearity as the starting point for dealing with these symmetries. In this approach all linear symmetries are formally treated on an equal footing. General results on linear symmetries are derived: These symmetries are then classified into three main classes, and an effort is made to discover the characteristic properties of the individual classes.  相似文献   

2.
The map equation   总被引:1,自引:0,他引:1  
Many real-world networks are so large that we must simplify their structure before we can extract useful information about the systems they represent. As the tools for doing these simplifications proliferate within the network literature, researchers would benefit from some guidelines about which of the so-called community detection algorithms are most appropriate for the structures they are studying and the questions they are asking. Here we show that different methods highlight different aspects of a network's structure and that the the sort of information that we seek to extract about the system must guide us in our decision. For example, many community detection algorithms, including the popular modularity maximization approach, infer module assignments from an underlying model of the network formation process. However, we are not always as interested in how a system's network structure was formed, as we are in how a network's extant structure influences the system's behavior. To see how structure influences current behavior, we will recognize that links in a network induce movement across the network and result in system-wide interdependence. In doing so, we explicitly acknowledge that most networks carry flow. To highlight and simplify the network structure with respect to this flow, we use the map equation. We present an intuitive derivation of this flow-based and information-theoretic method and provide an interactive on-line application that anyone can use to explore the mechanics of the map equation. The differences between the map equation and the modularity maximization approach are not merely conceptual. Because the map equation attends to patterns of flow on the network and the modularity maximization approach does not, the two methods can yield dramatically different results for some network structures. To illustrate this and build our understanding of each method, we partition several sample networks. We also describe an algorithm and provide source code to efficiently decompose large weighted and directed networks based on the map equation.  相似文献   

3.
In this paper, we presented a method to calculate the spectral-resolved opacity for Non-Local-Thermodynamic-Equilibrium (non-LTE) plasmas. By solving the rate equations, we get the population. In the rate equations, configuration-averaged rate coefficients are used and the cross sections are calculated based on the first-perturbation theory. Using the detailed configuration accounting with the term structures treated by the unresolved transition array model, we calculated the spectral-resolved opacity of Al plasmas. The results are compared with those of other theoretical models. From the comparison, we can see that the present results fit well with other models for low-Z plasmas. For high-Z plasmas, we will give detailed discussion in the future.  相似文献   

4.
A detailed Hamiltonian analysis for a five-dimensional Stüeckelberg theory with a compact dimension is performed. First, we develop a pure Dirac’s analysis of the theory; we show that after performing the compactification, the theory is reduced to four-dimensional Stüeckelberg theory plus a tower of Kaluza–Klein modes. We develop a complete analysis of the constraints, we fix the gauge and we show that there are present pseudo-Goldstone bosons. Then we quantize the theory by constructing the Dirac brackets. As complementary work, we perform the Faddeev–Jackiw quantization for the theory under study, and we calculate the generalized Faddeev–Jackiw brackets, we show that both the Faddeev–Jackiw and Dirac’s brackets are the same. Finally we discuss some remarks and prospects.  相似文献   

5.
In this paper, we have studied a massive scalar field for a Marder type universe in the context of Lyra and Riemannian geometries. From the exact solutions obtained we show that the massive scalar field does not survive in Lyra and Riemannian geometries for an anisotropic Marder type universe. Therefore we have solved the massless scalar field problem in Lyra and Riemann geometries for two cases. Also we have obtained vacuum solutions for homogeneous and anisotropic Marder space-time in Lyra geometry and the solutions obtained are compared by considering Lyra and Riemann geometries. Finally, some physical and kinematical properties are discussed by using graphics.  相似文献   

6.
It is known that for a slow fading Gaussian wiretap channel without channel state information at the transmitter and with statistically independent fading channels, the outage probability of any given target secrecy rate is non-zero, in general. This implies that the so-called zero-outage secrecy capacity (ZOSC) is zero and we cannot transmit at any positive data rate reliably and confidentially. When the fading legitimate and eavesdropper channels are statistically dependent, this conclusion changes significantly. Our work shows that there exist dependency structures for which positive zero-outage secrecy rates (ZOSR) are achievable. In this paper, we are interested in the characterization of these dependency structures and we study the system parameters in terms of the number of observations at legitimate receiver and eavesdropper as well as average channel gains for which positive ZOSR are achieved. First, we consider the setting that there are two paths from the transmitter to the legitimate receiver and one path to the eavesdropper. We show that by introducing a proper dependence structure among the fading gains of the three paths, we can achieve a zero secrecy outage probability (SOP) for some positive secrecy rate. In this way, we can achieve a non-zero ZOSR. We conjecture that the proposed dependency structure achieves maximum ZOSR. To better understand the underlying dependence structure, we further consider the case where the channel gains are from finite alphabets and systematically and globally solve the ZOSC. In addition, we apply the rearrangement algorithm to solve the ZOSR for continuous channel gains. The results indicate that the legitimate link must have an advantage in terms of the number of antennas and average channel gains to obtain positive ZOSR. The results motivate further studies into the optimal dependency structures.  相似文献   

7.
In this paper we show that the Boltzmann weights of the three-dimensional Baxter-Bazhanov model give representations of the braid group if some suitable spectral limits are taken. In the trigonometric case we classify all possible spectral limits which produce braid group representations. Furthermore, we prove that for some of them we get cyclotomic invariants of links and for others we obtain tangle invariants generalizing the cyclotomic ones.  相似文献   

8.
Finite mixture models are widely used for modeling and clustering data. When they are used for clustering, they are often interpreted by regarding each component as one cluster. However, this assumption may be invalid when the components overlap. It leads to the issue of analyzing such overlaps to correctly understand the models. The primary purpose of this paper is to establish a theoretical framework for interpreting the overlapping mixture models by estimating how they overlap, using measures of information such as entropy and mutual information. This is achieved by merging components to regard multiple components as one cluster and summarizing the merging results. First, we propose three conditions that any merging criterion should satisfy. Then, we investigate whether several existing merging criteria satisfy the conditions and modify them to fulfill more conditions. Second, we propose a novel concept named clustering summarization to evaluate the merging results. In it, we can quantify how overlapped and biased the clusters are, using mutual information-based criteria. Using artificial and real datasets, we empirically demonstrate that our methods of modifying criteria and summarizing results are effective for understanding the cluster structures. We therefore give a new view of interpretability/explainability for model-based clustering.  相似文献   

9.
Using Langevin simulations, we. investigate the depinning dynamics of two-dimensional charged colloids on a random laser-optical substrate. With an increase in the strength of the substrate, we find a transition from crystal to smectic flows above the depinning. A power-law scaling relationship between average velocity and applied driving force could be obtained for both flows, and we find that the scaling exponents are no bigger than 1 for the crystal and are bigger than 1 for the smectic flows.  相似文献   

10.
Nanomagnetic memory and logic circuits are attractive integrated platforms for studying the fundamental thermodynamic limits of computation. Using the stochastic Landau-Lifshitz-Gilbert equation, we show by direct calculation that the amount of energy dissipated during nanomagnet erasure approaches Landauer's thermodynamic limit of kTln(2) with high precision when the external magnetic fields are applied slowly. In addition, we find that nanomagnet systems behave according to generalized formulations of Landauer's principle that hold for small systems and generic logic operations. In all cases, the results are independent of the anisotropy energy of the nanomagnet. Lastly, we apply our computational approach to a nanomagnet majority logic gate, where we find that dissipationless, reversible computation can be achieved when the magnetic fields are applied in the appropriate order.  相似文献   

11.
Summary We evaluate the mean meridional circulation for the Northern and Southern Hemispheres, working with the dry-static-energy and mass conservation equations. We derive an equation for the mass streamfunction on lines at constant dry static energy and we numerically integrate this equation using the annual mean data related to the period 1963 through 1973, as published by Oort in 1983. In both Hemispheres we find a rather intense Ferrel cell and a weaker Hadley cell; we do not find any polar cell. Cells strengths are accurately computed in the upper part of the troposphere; we are less confident on their numerical values in the lower part of the troposphere, for the presence of boundary layer. Comparisons with previous calculations are discussed.  相似文献   

12.
Characterizing the structure of small-world networks   总被引:1,自引:0,他引:1  
We give exact relations for small-world networks (SWN's) which are independent of the "degree distribution," i.e., the distribution of nearest-neighbor connections. For the original SWN model, we illustrate how these exact relations can be used to obtain approximations for the corresponding basic probability distribution. In the limit of large system sizes and small disorder, we use numerical studies to obtain a functional fit for this distribution. Finally, we obtain the scaling properties for the mean-square displacement of a random walker, which are determined by the scaling behavior of the underlying SWN.  相似文献   

13.
We use the white noise calculus as a framework for the introduction of Dirichlet forms in infinite dimensions. In particular energy forms associated with positive generalized white noise functionals are considered and we prove criteria for their closability. If the forms are closable, we show that their closures are Markovian (in the sense of Fukushima).  相似文献   

14.
We consider the scattering from a two-dimensional periodic surface. From our previous work on scattering from one-dimensional surfaces (1998 Waves Random Media 8 385) we have learned that the spectral-coordinate (SC) method was the fastest method we have available. Most computational studies of scattering from two-dimensional surfaces require a large memory and a long calculation time unless some approximations are used in the theoretical development. By using the SC method here we are able to solve exact theoretical equations with a minimum of calculation time.

We first derive in detail (part I) the SC equations for scattering from two-dimensional infinite surfaces. Equations for the boundary unknowns (surface field and/or its normal derivative) result as well as an equation to evaluate the scattered field once we have solved for the boundary unknowns. Special cases for the perfectly reflecting Dirichlet and Neumann boundary value problems are presented as is the flux-conservation relation.

The equations are reduced to those for a two-dimensional periodic surface in part II and we discuss the numerical methods for their solution. The two-dimensional coordinate and spectral samples are arranged in one-dimensional strings in order to define the matrix system to be solved.

The SC equations for the two-dimensional periodic surfaces are solved in part III. Computations are performed for both Dirichlet and Neumann problems for various periodic sinusoidal surface examples. The surfaces vary in roughness as well as period and are investigated when the incident field is far from grazing incidence ('no grazing') and when it is near-grazing. Extensive computations are included in terms of the maximum roughness slope which can be computed using the method with a fixed maximum error as a function of the azimuthal angle of incidence, the polar angle of incidence and the wavelength-to-period ratio.

The results show that the SC method is highly robust. This is demonstrated with extensive computations. Furthermore, the SC method is found to be computationally efficient and accurate for near-grazing incidence. Computations are presented for grazing angles as low as 0.01°. In general, we conclude that the SC method is a very fast, reliable and robust computational method to describe scattering from two-dimensional periodic surfaces. Its major limiting factor is high slopes and we quantify this limitation.  相似文献   

15.
In this paper we revisit the problem of Brownian motion in a tilted periodic potential. We use homogenization theory to derive general formulas for the effective velocity and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain power series expansions for the velocity and the diffusion coefficient as functions of the external forcing. Thus, we provide systematic corrections to Einstein’s formula and to linear response theory. Our theoretical results are supported by extensive numerical simulations. For our numerical experiments we use a novel spectral numerical method that leads to a very efficient and accurate calculation of the effective velocity and the effective diffusion tensor.  相似文献   

16.
We show that the formulas for the sum rules for the eigenvalues of inhomogeneous systems that we have obtained in two recent papers are incomplete when the system contains a zero mode. We prove that there are finite contributions of the zero mode to the sum rules and we explicitly calculate the expressions for the sum rules of order one and two. The previous results for systems that do not contain a zero mode are unaffected.  相似文献   

17.
In this paper, we study the nonlinear coupled boundary value problem arising from the nonlinear dispersion of a pollutant ejected by an external source into a channel flow. We obtain exact solutions for the steady flow for some special cases and an implicit exact solution for the unsteady flow. Additionally, we obtain analytical solutions for the transient flow. From the obtained solutions, we are able to deduce the qualitative influence of the model parameters on the solutions. Furthermore, we are able to give both exact and analytical expressions for the skin friction and wall mass transfer rate as functions of the model parameters. The model considered can be useful for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water bodies.  相似文献   

18.
The two fields of topological insulators and metamaterials are independent. In this Letter, we firstly investigate the Fresnel coefficients for the reflected and refracted electromagnetic waves across the interface between topological insulators and left-handed metamaterials. Then, we derive the exact analytic expressions for Kerr and Faraday rotations. By way of multiple reflections method, we demonstrate that perfect lens with left-handed metamaterials slab and topological insulators can be designed. On the other hand, the processes of reflection and refraction are investigated in the case of topological insulator and chiral metamaterial. Then, we give the reflection and transmission coefficients of topological insulator with a chiral medium slab. Lastly, the potential applications of these results are discussed.  相似文献   

19.
《Nuclear Physics B》1986,273(1):157-164
We investigate non-perturbative contributions to ultraviolet divergences in several field theories. Although we concentrate on finite theories with extended supersymmetry, we also present some results for asymptotically free theories. The N = 2 supersymmetric σ models that we study at the end of the paper are important in the theory of superstrings. Unfortunately, while we are able to rule out instanton contributions to the β functions of these theories, we do not have a complete non-perturbative proof that they are conformally invariant. Sigma models with N = 4 supersymmetry are shown to be both perturbatively and non-perturbatively finite.  相似文献   

20.
The dynamic scaling functions for ferromagnets above and below the critical temperature are determined using mode coupling theory. Below the critical temperature we study isotropic ferromagnets taking into account the exchange interaction only and give the first numerical solution of the resulting mode coupling equations. In the paramagnetic phase we examine how the critical dynamics is modified by the addition of the dipoledipole interaction. On the basis of this theory we are able to explain in a unifying fashion the results of different experimental methods; i.e.: neutron scattering, hyperfine interaction and electron-spin resonance. Predictions for new experiments are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号