首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of theoretical and experimental investigations of the interaction of a gas jet with the surface of a viscous liquid are reported. Relations are derived for calculating the force exerted by the gas jet on the liquid surface. A dependence of the gas jet compression ratio in the nozzle outlet on the pressure in front of the nozzle is revealed. The values of the shape factor for the indentation formed by the gas jet on the surface of the liquid are determined for various diameters of the indentation and the distances between the outlet hole of the nozzle and the liquid surface. The theoretical conclusions formulated here are confirmed by the results of experiments.  相似文献   

2.
Velocity and ejection pumping are proposed as novel evacuation techniques to assist the static differential pumping already in use in the environmental scanning electron microscope. The gas velocity (or momentum) that accompanies the supersonic jet stream formed through the first pressure limiting aperture is used to initially force the gas out of the system by placing the second pressure limiting aperture at an optimum position in the gaseous jet. By this method, the gaseous particle thickness between the two apertures is minimised and the required pumping speed of the first evacuation stage is also reduced to an absolute minimum. A further improvement is achieved by inserting an appropriately shaped baffle between the two apertures, which shields the second aperture from the gas jet of the first and acts as an ejector-jet pump. The gas leak rate through the second aperture is maintained at an acceptable low level by both systems, even below the static leak rate level when the ejector-jet design is used, in particular. The result of either method has a double benefit, namely, the electron beam loss in the intermediate pumping stage is minimised together with a reduction of pump speed requirements. This translates to best instrument performance and minimal manufacturing costs.  相似文献   

3.
通过设计新型的交流电压激励的氩气等离子体射流,在棒电极的上游与下游区域均产生了大气压非平衡态等离子体羽。该射流与平行场射流和交叉场射流不同,它的电场与气流方向的夹角可以在一定范围内变化。结果表明,随着外加电压或夹角的增加,上游羽的长度增加而下游羽的长度减小。利用光学和电学的方法,研究发现随着外加电压的增加,上下游放电脉冲的个数均增加。利用放电的光学发射谱,发现上游羽有Ar和OH的谱线,而下游羽除了Ar和OH的谱线外,还可以观察到N2的谱线。并且下游羽的谱线强度比上游羽的略高。基于碰撞辐射模型,通过谱线强度比的方法研究了上下游羽的电子密度和电子激发温度。结果表明上下游羽的电子密度随着外加电压的增加而增加。上下游羽的电子激发温度也随着外加电压的增加而增加。并且,在同一外加电压时下游羽的电子密度和电子激发温度均比上游羽的高。此外,利用OH发射光谱研究了上下游羽的气体温度,发现下游羽的气体温度也比上游羽的略高。  相似文献   

4.
Plasma generation for the plasma cutting process   总被引:1,自引:0,他引:1  
This study is an attempt to estimate the overall properties, viz. the thermal power and force, of an intense plasma jet produced by a plasma cutting torch, and to relate the properties of the plasma to the diameter of the nozzle of the plasma torch and the flow rate of plasma-forming gas. For cutting metallic plates using a thermal plasma, a narrow plasma jet is produced by means of a transferred electric are between an electrode in a plasma torch and the material to be cut. The power density and pressure exerted by the plasma jet on the material at the region of cut needs to be high so that a straight cut, without dress at the bottom of the plate, can be obtained. A simple theory to describe the behavior of the arc in a plasma cutting torch has been developed to predict the are radius, pressure, and arc voltage at the nozzle exit as a function of are current for a range of nozzle sizes and air flow rates. The results obtained are in good agreement with the measured values for an air plasma cutting torch nominally rated for 100-A operation. The relationships between the mass flow rate of plasma gas, plasma power, and arc force have been discussed in the light of design of plasma torches for plasma cutting  相似文献   

5.
20cm离子推力器放电室流场计算模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
为了优化20cm离子推力器放电室内部推进剂供气方式,研究了在不发生气体放电时,推力器阳极和主阴极供气接口处的流体速度和压强,并以此开展推力器放电室内部的流场计算。结果表明:采用单阳极供气管方式,阳极出口处压强为4~158Pa,气流出口速度为0.1~47m/s;阴极小孔出口处的压强约为33.1Pa,出口速度约为12m/s;考虑真空系统的返流作用时,单阳极供气管方式下放电室内部压强为0.001~0.4Pa,大部分区域Xe原子数密度为(0.2~3)×1018/m3,在靠近栅极的部分区域数密度达到9×1019/m3左右;在增加阳极组件的供气管数量后,阳极的气体出口速度为18~40m/s,放电室压强为0.03~0.1Pa,大部分区域Xe原子数密度为(0.72~2.4)×1019/m3,靠近阳极与主阴极进气端的小部分区域原子数密度约2×1017/m3,且放电室内部原子密度整体分布较为均匀。  相似文献   

6.
实验与数值研究了平面激波诱导下双层气柱的演化规律.利用肥皂膜技术生成了3种双层气柱,通过固定内、外层气柱半径,改变内层气柱在流向方向上的位置,研究了双层气柱偏心效应对流场演化的影响.结果表明,当内层气柱向上游偏移时,外层气柱的上游界面在后期会产生朝向上游的"射流";当内层气柱向下游偏移时,下游两道界面会较早地耦合在一起...  相似文献   

7.
Plasma and fluid behavior in a nonequilibrium disk magnetohydrodynamics generator with multiple loading has been investigated with a time-dependent three-dimensional numerical simulation. Particular attention is paid to the effects of the downstream load resistance and the influences of the middle electrode on the plasma and fluid flow. The possibility to improve generator performance by multiple-loading operation is also examined. It is shown that increase in the downstream load resistance raises the static pressure and decelerates the working gas in the upstream region. This is because the static pressure increase and the boundary layer development near the middle electrode have the same effects as the change of the outlet boundary conditions for the upstream region. It is found that the ionization degree of seed atoms is kept high on the middle electrode, whereas, the electron temperature is decreased rapidly. This results from the longer relaxation time of ion number density compared to that of the electron temperature. The multiple-loading operation leads to an improvement of the enthalpy extraction ratio. Isentropic efficiency, however, becomes somewhat lower under the multiple-loading condition. This is caused by the high static pressure and the low electrical efficiency under the high enthalpy extraction condition for the multiple loading.  相似文献   

8.
During laser cutting of stainless steels, titanium and aluminum alloys, a coaxial and high pressure inert gas jet is used to improve the cut edge quality. The process normally consumes a large amount of inert gas and has a poor tolerance to variation in process parameters. This is solely because the gas nozzles are mostly of the conical and convergent type in which the gas jets are subsonic. Based on two dimensional steady state gas dynamic theory, computer simulation and shadowgraphic techniques, the gas jet patterns from conical nozzles and the newly designed supersonic nozzles are analyzed. The distribution of pressure, momentum, gas density and existence of shock waves are predicted and mapped. Based on these characteristics, the effect of the gas jets upon the cut quality is explained. It is concluded that a supersonic gas jet offers the best flow characteristics for high pressure laser cutting.  相似文献   

9.
An experimental study of the generation of pressure fluctuations in a well acoustic emitter with nozzles of various shapes has been carried out. The effect of a smooth nozzle inlet section on the generation amplitude, the optimum jet length, and the outlet diameter has been studied. The formation of a region of reverse currents connecting to the cavity in the nozzle between the channel wall and the jet periphery has been considered. A significant increase in the generation amplitude produced at the smooth nozzle inlet and the formation of a uniform velocity profile in the nozzle channel have been observed.  相似文献   

10.
Breakup and breakdown of bent kerosene jets in gas turbine conditions   总被引:1,自引:0,他引:1  
Jet A-1 kerosene injection in air crossflow conditions has been studied for temperature up to 600 K and pressure up to 2 MPa. Thousand frames of jet shadowgraphs have been sampled for each of the 82 experimental conditions to determine statistical parameters characterizing the jet behavior. Among them the breakdown point, corresponding to the spatial position along the jet where the momentum jet looses its coherence, is the most relevant one. The axial coordinate of this point is strongly correlated with the liquid–gas momentum ratio while the breakdown position in gas stream direction mainly depends on the aerodynamic Weber number. This shows that the deformation of the liquid before and after its primary atomization is the most significant correction in respect to the ballistic, inviscid evolution of a bent cylindrical jet. The generalized profile equation, normalized to the breakdown coordinates, is invariant in respect of whatever external parameter and it predicts with high level of accuracy the measured profile upstream of the breakdown position.  相似文献   

11.
Water jets accelerated by differently configured convergent nozzles of diameters ranging from 4.5 to 5.0 mm are studied. The excess pressure at the nozzle inlet varies from 5 × 103 to 3.5 × 106 Pa. Velocity measurements are carried out with a spring dynamometer and a free-running Pelton microturbine. The jet strength at the outlet of the nozzle is found to increase by a factor of 4.0–4.5 compared with the water flow strength at the inlet, which depends on the excess pressure and volume flow at the inlet. Reasons for such an effect and a possible source of the additional energy are considered. The 2D Bernoulli equation used instead of the 1D equation routinely applied in nozzle analysis leads to a negative value of the excess pressure at the nozzle exit section and in the jet. Gas evolution and cavitation enhance this effect because of a decrease in the jet density. As a result, the jet is accelerated not only by the inlet pressure but also due to the fact that the potential energy of the flowing medium decreases because of a decrease in its absolute pressure down to the technical vacuum level. The contraction of the jet by the atmospheric air and the establishment of the equilibrium (in air) pressure in the water jet eventually raise its kinetic energy through the internal energy of the air.  相似文献   

12.
An analysis is made of the sound generated by the impingement of an air jet on the gas-water interface of a supercavity. The water is in uniform low Mach number motion over the interface. The interface is rippled by the jet, which produces an unsteady surface force on the water that behaves as a dipole or monopole acoustic source, respectively, at high and low frequencies. In a first approximation the very large difference in the gas density and that of water implies that the surface force is similar to that occurring when a jet impinges on a rigid wall. Data from recent measurements by Foley (2009, Ph.D. Dissertation, Department of Mechanical Engineering, Boston University) of the frequency spectrum of the surface force produced by the impact of a turbulent jet on a wall are used to formulate an analytical representation of the spectrum and thence to predict the sound produced in water when the same jet impinges on the cavity interface. The prediction is used to estimate the characteristics of gas jet impingement noise for an experimental supercavitating vehicle in use at the Applied Research Laboratory of Penn State University.  相似文献   

13.
大气压微等离子体射流电子密度研究   总被引:1,自引:0,他引:1  
采用微空心阴极放电装置,利用光学方法和电学方法研究了大气压流动Ar和N2混合气体中产生的微等离子体射流特性。研究发现,随着电源输入功率增大到一定数值,微空心阴极装置中两个电极间气体发生击穿,通过击穿气隙气体的流动会沿着气流方向产生最大为4 mm的等离子体射流。放电电流为准连续的脉冲放电形式,其中放电电流脉冲宽度约为0.1 μs。分别利用爱因斯坦方程和等离子体发射光谱中谱线的Stark展宽方法计算了电子密度。结果发现,2种计算方法得出的微等离子体射流的电子密度均在1015·cm-3的量级。研究还发现,功率对微等离子体射流电子密度影响不大。利用气体击穿理论,对以上结论进行了定性分析。  相似文献   

14.
The paper presents a simple theoretical model of the breakdown of the supersonic plasma jet generated by the hollow cathode discharge inside the nozzle in the low pressure RF plasma-chemical reactor. Through the nozzle which is drilled in the RF electrode the working gas flows to the reactor chamber. If at the outlet of the nozzle the gas flow is supersonic the well defined plasma jet is created inside the reactor chamber. The results of our model are in qualitative agreement with experimental data.  相似文献   

15.
 数值研究了平面激波冲击氮气环境中SF6气泡界面的Richtmyer-Meshkov不稳定性,重点关注其中的激波聚焦及射流的产生和发展过程。在入射激波马赫数为1.23的情况下,给出了压力、密度、数值纹影和涡量等物理量的演化图像,定量分析了流场中压力最大值、密度最大值、射流速度、环量和斜压力矩随时间的变化关系。计算结果表明,平面激波冲击SF6气泡过程有很强的聚能效应,在气泡内部靠近下游极点处发生激波近似理想聚焦和点爆炸现象,直接导致出现二次波系以及向下游运动的细长射流结构。相比入射激波,二次波系产生斜压力矩和涡量的能力要弱得多。  相似文献   

16.
在激光与物质相互作用的实验中,气体靶通常由超声速喷嘴在高背压下向真空中高速喷射气体产生。激光与气体靶相互作用时确定打靶条件对整个实验有着十分重要的意义。为了得到不同实验条件下气体靶密度的分布特性,采用马赫-曾德尔干涉法测量了气体靶密度分布,获取了干涉图样。使用基于傅里叶变换的条纹处理方法测得的干涉图样,得到不同实验条件下气体分子密度的全空间分布。实验表明:用M-Z干涉仪测量超声速气体喷嘴产生的气体靶密度分布十分有效。基于傅里叶变换的条纹处理方法具有精度高、实时性好的优点,为打靶时气体靶密度的实时测量提供了可能。  相似文献   

17.
The ideal gas exhaustion from an infinite volume into a gas at rest through a supersonic conical Laval nozzle is considered. The problem was solved numerically by steadying in time in a unified formulation for the regions inside the nozzle and in the ambient environment. In such a statement, the nozzle outlet section is no internal boundary of the region under consideration, and there is no need of specifying the boundary conditions here. Local subsonic zones arising in the flow lie inside the region under consideration, which eliminates the possibility of using a marching technique along one of the coordinates. The numerical solution is constructed by a unified algorithm for the entire flow region, which gives a possibility of obtaining a higher accuracy. The computations are carried out in the jet initial interval, where, according to monograph [1], the wave phenomena predominate over the viscous effects. The exhaustion process is described by the system of gas dynamics equations. Their solution is constructed with the aid of a finite difference Harten’s TVD (Total Variation Diminishing) scheme [2], which has the second approximation order in space. The second approximation order in time is achieved with the aid of a five-stage Runge-Kutta method. The solution algorithm has been parallelized in space and implemented on the multi-processor computer systems of the ITAM SB RAS and the MVS-128 of the Siberian Supercomputer Center of SB RAS. The influence of the semi-apex angle of the nozzle supersonic part and the pressure jump between the nozzle outlet section and the ambient environment on the flow in the initial interval of a non-isobaric jet is investigated in the work. A comparison with experimental data is presented. The computations are carried out for the semi-apex angles of the nozzle supersonic part from 0 (parallel flow) to 20 degrees. For all considered nozzles, the Mach number in the nozzle outlet section, which was computed from the one-dimensional theory, equaled three. Computations showed that in the case of flow acceleration in a conical supersonic nozzle, its geometry is one of the main factors determining the formation of the jet initial interval in ambient environment.  相似文献   

18.
袁都奇 《物理学报》2006,55(4):1634-1638
根据由赝势法得到的非理想玻色气体的自由能和状态方程,研究了相互作用对凝聚温度的影响.从热力学角度揭示了存在引力作用时定压热容量、等温压缩系数、定压膨胀系数的反常热力学特性.研究了引力作用下玻色气体系统的不稳定性,给出了不稳定性的温度判据和粒子数密度判据. 关键词: 相互作用 玻色气体 热力学性质 不稳定性判据  相似文献   

19.
王城  张泽龙  崔海超  夏维珞  夏维东 《中国物理 B》2017,26(8):85207-085207
A novel DC plasma torch with multiple cathodes is developed for generating laminar, transitional and turbulent plasma jets. The jet's characteristics, including jet appearance, voltage fluctuation, thermal efficiency, specific enthalpy, and distributions of temperature, pressure, and velocity, are experimentally investigated. The results show that as the gas flow rate increases, the plasma jet transforms first from the laminar state to the transitional state and second to the turbulent state. Compared with the transitional/turbulent jet, the laminar jet possesses not only a better stability and a longer hightemperature zone but also a higher average/core temperature and a higher specific enthalpy at the nozzle's outlet. With the change of jet states from the laminar to the turbulent flow, the core pressure and velocity at the nozzle's outlet increase,while the decaying rates of temperature/pressure/velocity along the jet's axial direction increase sharply. Furthermore, applications of laminar, transitional and turbulent jets for zirconia spray coating are described. The test results indicate that the long laminar jet is favorable for the deposition of a high-quality coating because the powder particles injected into the laminar jet may have better heating and lower kinetic energy.  相似文献   

20.
Combined action on a source that flows into a submerged area or vacuum in the constant Mach number regime has been studied. The action by an external force has been defined with a constant distribution function (the force is given per unit volume) and with a distribution function proportional to the gas density (the force is given per unit mass). The investigations have been carried out for cylindrical and spherical sources. Similarity and differences, advantages and drawbacks of the above-mentioned cases and variants have been analyzed. It has been shown that the enthalpy increases significantly in subsonic flow (for the Mach number smaller than unity) by several times in the cylindrical source and by more than an order of magnitude in the spherical source. The total enthalpy increment increases with the length of the action zone or with the coordinate of the closing section.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号